Las destrezas argumentativas en la evolución de modelos en una actividad de geología

  1. Paloma Blanco-Anaya 2
  2. Joaquín Díaz de Bustamante 2
  3. Paula Cristina Cardoso Mendonça 1
  1. 1 Universidade Federal de Ouro Preto
    info

    Universidade Federal de Ouro Preto

    Ouro Preto, Brasil

    ROR https://ror.org/056s65p46

  2. 2 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Revista:
Revista Eureka sobre enseñanza y divulgación de las ciencias

ISSN: 1697-011X

Año de publicación: 2019

Volumen: 16

Número: 3

Páginas: 3105

Tipo: Artículo

DOI: 10.25267/REV_EUREKA_ENSEN_DIVULG_CIENC.2019.V16.I3.3105 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista Eureka sobre enseñanza y divulgación de las ciencias

Resumen

Este artículo presenta un análisis sobre cómo las destrezas argumentativas intervienen en el proceso de modelización. Para ello se hace una revisión de la literatura sobre los trabajos en los que se analizan las interacciones entre ambas prácticas científicas, lo cual establece un marco para fundamentar el objetivo de investigación: examinar cómo evolucionan los modelos de los estudiantes en el proceso de elaboración y evaluación de los mismos a través de las destrezas argumentativas. El estudio se llevó a cabo con alumnado de 1º de bachillerato que cursaba Biología y Geología (16-17 años), quienes tenían que explicar de forma científica cómo se formó el pliegue sinclinal de O Courel (Lugo, España). Los resultados muestran que las destrezas argumentativas con mayor implicación en la evolución de los modelos son la contraargumentación y, sobre todo, la refutación. Para favorecerlo es necesario que en el diseño de actividades de modelización se incluyan aspectos que favorezcan el desempeño conjunto de las dos prácticas científicas, aportando datos para evaluar los modelos y favorecer la crítica y el intento de persuasión entre compañeros, lo cual enriquecerá las destrezas argumentativas

Información de financiación

Al proyecto EDU2015-66643-C2-2-P, del Ministerio de Economia y Competitividad de Espana.

Financiadores

Referencias bibliográficas

  • Ageitos N., Puig B., Calvo Peña X. (2017) Trabajar genética y enfermedades en secundaria integrando la modelización y la argumentación científica. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 14 (1), 86-97. http://hdl.handle.net/10498/18848
  • Ault C. R. (1982) Time in geological explanations as perceived by elementary school students. Journal of Geological Education, 30, 304-309. DOI: 10.5408/0022-1368-30.5.304
  • Ausubel D. P. (2002) Adquisición y retención del conocimiento: una perspectiva cognitiva. Barcelona: Paidós.
  • Bell T., Urhahne D., Schanze S., y Ploetzner R. (2010) Collaborative inquiry learning: Models, tools, and challenges. International Journal of Science Education, 32(3), 349–377. doi:10.1080/ 09500690802582241
  • Berjillos P. y Pedrinaci E. (1994) Concepto de tiempo geológico: orientaciones para su tratamiento en la educación secundaria. Enseñanza de las Ciencias de la Tierra, 2(1), 240-251.
  • Blanco Anaya P. (2015) Modelización y argumentación en actividades prácticas de geología en secundaria (Tesis de doctorado) Universidad de Santiago de Compostela, Santiago de Compostela.
  • Blanco Anaya P., Díaz de Bustamante J. (2014) Argumentación y uso de pruebas: Realización de inferencias sobre una secuencia de icnitas. Enseñanza de las ciencias, 32 (2),263-280.
  • Blanco Anaya P. y Díaz de Bustamante, J. (2017) Análisis del nivel de desempeño para la explicación de fenómenos de forma científica en una actividad de modelización. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 14 (3), 505-520
  • Böttcher F., Meisert A. (2011) Argumentation in science education: A model-based framework. Science & Education, 20 (2), 103-140. https://doi.org/10.1007/s11191-0109304-5
  • Boulter C., Buckley B. (2000) Constructing a typology of models for science education. En: J. K. Gilbert, C. J. Boulter (Eds.), Developing models in science education (pp. 41–57). Dordrecht. Kluwer Academic Publisher.
  • Brown J. S., Collins A., Duguid P. (1989) Situated cognition and the culture of learning. Educational Researcher, 18, 32-42. https://doi.org/10.3102/0013189X018001032
  • Clement J. (1989) Learning via Model Construction and Criticism Protocol evidence on sources of creativity in science. En J.A Glover, R.R. Ronning, C.R. Reynolds, (Eds.), Handbook of Creativity, pp. 341-381. Nueva York: Plenum.
  • Clement J. J. (2008) Student/Teacher co-construction of visualizable models in large group discussion. En: J. J. Clement, M. A. Rea-Ramirez (Eds.), Model based learning and instruction in science (pp. 11–22). Dordrecht: Springer.
  • Erduran S., Jiménez-Aleixandre M.P. (2008) Argumentation in science education: perspectives from classroom-based research. Dordrecht, the Netherlands: Springer
  • Evagorou M., Puig Mauriz B. (2017) Engaging elementary school pre-service teachers in modeling a socioscientific issue as a way to help them appreciate the social aspects of science. International Journal of Education in Mathematics, Science and Technology, 5 (2), 113123. DOI: 10.18404/ijemst.99074
  • Franco C., Colinvaux D. (2000) Grasping mental models. En J. K. Gilbert, C. J. Boulter (Eds.), Developing Models in Science Education (pp. 93-118). Dordrecht, The Netherlands: Kluwer.
  • Galagovsky L. R., Adúriz-Bravo A. (2001) Modelos y analogías en la enseñanza de las ciencias naturales. El concepto de modelo didáctico analógico. Enseñanza de las Ciencias, 19 (2), 231-242.
  • Giere R. N. (2004) How models are used to represent reality. Philosophy of science, 71 (5), 742-752.
  • Gilbert J. K., Boulter C. J., Elmer R. (2000) Positioning models in science education and in design and technology education. En J. K. Gilbert y C. J. Boulter (Eds.), Developing Models in Science Education (pp. 3-17). Dordrecht, The Netherlands: Kluwer.
  • Gilbert J.K., Pietrocola M., Zylbersztajn A., Franco C. (2000) Science and Education, Notions of Reality, Theory and Models. En J. K. Gilbert, C. J. Boulter (Eds.), Developing models in science education (pp. 19-40). Dordrecht. Kluwer Academic Publisher.
  • Gilbert J. K., Justi R. (2016) Modelling-based Teaching in Science Education. Basel, Switzerland: Springer International Publishing.
  • Jiménez Aleixandre M. P., Bravo B., Puig B. (2009) ¿Cómo aprende el alumnado a usar y evaluar pruebas? Aula de Innovación Educativa, 186, 10-12.
  • Jiménez Aleixandre M. P. (2010) 10 Ideas Clave. Competencias en argumentación y uso de pruebas. Barcelona: Graó.
  • Jiménez-Aleixandre M.P., Crujeiras B. (2017) Epistemic Practices and Scientific Practices in Science Education. En K.S. Taber, B. Akpan (Eds), Science Education. New Directions in Mathematics and Science Education (pp. 69-80). Sense Publishers: Rotterdam
  • Justi R., Gilbert J. K. (2002) Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24 (4), 369-387. https://doi.org/10.1080/09500690110110142
  • Justi R. (2015) Relações entre argumentação e modelagem no contexto da ciência e do ensino de ciências. Ensaio Pesquisa em Educação em Ciências, 17, 31-48. http://dx.doi.org/10.1590/1983-2117201517s03
  • King C. (2008). Geoscience education: an overview, Studies in Science Education, 44(2), 187-222. DOI: 10.1080/03057260802264289
  • Koslowski B., Marasia J., Chelenza M., Dublin R. (2008) Information becomes evidence when an explanation can incorporate it into a causal framework. Cognitive Development, 23 (4), 472-487. https://doi.org/10.1016/j.cogdev.2008.09.007
  • Kuhn D. (1991) The skills of argument. Cambridge: Cambridge University Press.
  • Loarces R. G., Ferrer G. F., García F. G. (2019) Evolución de los modelos mentales sobre fosilización tras el proceso de enseñanza-aprendizaje. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 16(2), 2102 doi: 10.25267/Rev_Eureka_ensen_divulg_cienc.201 9.v16.i2.2102
  • Márquez, C., Artés, M. (2016) Propuesta de análisis de representaciones sobre el modelo cambio geológico del alumnado del grado de educación primaria. Enseñanza de las Ciencias de la Tierra, 24(2), 169-181.
  • Matte P. (1968) La structure de la virgation hercynienne de Galice (Espagne). Géologie Alpine, 44, 157-280.
  • McNeill K. L., Krajcik J. (2008) Inquiry and scientific explanations: Helping students use evidence and reasoning. Science as inquiry in the secondary setting, 121-134.
  • McNeill K. L., Krajcik J. (2012) Supporting grade 5-8 students in constructing explanations in science: The claim, evidence and reasoning framework for talk and writing. New York, NY: Pearson Allyn & Bacon.
  • Megalakaki O., Tiberghien A. (2011) A qualitative approach of modelling activities for the notion of energy. Electronic Journal of Research in Educational Psychology, 9 (1), 157-182.
  • Mendonça P. C. C., Justi R. (2013) The relationships between modelling and argumentation from the perspective of the model of modelling diagram. International Journal of Science Education, 35 (14), 2407-2434.
  • Mendonça P. C. C., Justi R. (2014) An instrument for analyzing arguments produced inmodeling based chemistry lessons. Journal of Research in Science Teaching, 51(2), 192-218.
  • Nersessian N. J. (2002) The cognitive basis of model-based reasoning in science. In: P. Carruthers, S. Stich and M. Siegal The Cognitive Basis of Science (pp. 133-153). Cambridge: Cambridge University Press.
  • Oliva J. M. (2011) Cómo usar analogías en la enseñanza de los modelos y de los procesos de modelización en ciencias. Alambique: Didáctica de las Ciencias Experimentales, 17 (69), 80-91.
  • Oliveira D. K. B., Justi R., Mendonça P. C. C. (2015) The use of representations and argumentative and explanatory situations. International Journal of Science Education, 37 (9), 1402-1435.
  • Osborne J. (2011) Science teaching methods: a rationale for practices. School Science Review, 93 (343), 93-103
  • Osborne J. (2014) Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25 (2), 177-196. https://doi.org/10.1007/s10972-014-9384-1
  • Passmore C. M., Svoboda J. (2012) Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535-1554. https://doi.org/10.1080/09500693.2011.577842
  • Pedrinaci E. (2001) Los procesos geológicos internos. Madrid:Síntesis.
  • Puig B., Ageitos N., Jiménez-Aleixandre M.P. (2017) Learning Gene Expression Through Modelling and Argumentation, Science & Education, 26 (10), 1193-1222. https://doi.org/10.1007/s11191-017-9943-x
  • Reiser B. J., Berland L. K., Kenyon L. (2012) Engaging Students in the Scientific Practices of Explanation and Argumentation. Science and Children, 49 (8), 8-13.
  • Sanz López J., Expósito Vaqueiro C. M., Montesinos López J. R. (2000) Estratigrafía y conodontos del Devónico Inferior del sinclinal del Caurel-Peñalba (NO de España). En J.B. Díez, A.C. Balbino (Eds.), I Congreso Ibérico de Paleontología, XVI Jornadas de la Sociedad Española de Paleontología y VII International Meeting of IGCP 421, Évora 2000.
  • Schwarz C. V., Reiser B. J., Davis E. A., Kenyon L., Achér A., Fortus D., Shwartz Y., Hug B., Krajcik J. (2009) Developing a Learning Progression for Scientific Modelling: Making scientific modelling accessible and meaningful for learners. Journal of Research in Science Teaching, 46 (6), 632-654. https://doi.org/10.1002/tea.20311
  • Siegel H. (1989) The rationality of science, critical thinking and science education. Synthese, 80, 9–41. https://doi.org/10.1007/BF00869946
  • Stroupe D. (2015) Describing “science practice” in learning settings. Science Education, 99 (6), 1033-1040. https://doi.org/10.1002/sce.21191
  • Tiberghien A. (2000) Designing teaching situations in secondary school. En R. Millar, J. Leach, y J. Osborne (Eds.), Improving science education. The contribution of research (pp. 27–47). Buckingham: Open University Press.
  • Toulmin S. (1958, edición de 1964) The uses of argument. Cambridge:University Press.
  • TrendR. (1998) An investigation into understanding of geological time among 10 and 11‐‐year old children, International Journal of Science Education,20(8),973-988. DOI:10.1080/0950069980200805
  • Zembal-Saul C., McNeill K. L., Hershberger K. (2013)What’s your evidence? Engaging k-5 students in constructing explanations in science. New York, NY: Pearson Allyn & Bacon.