Total mercury distribution among soil aggregate size fractions in a temperate forest podzol

  1. Gómez Armesto, Antía
  2. Bibián-Núñez, Lucía
  3. Campillo-Cora, Claudia
  4. Pontevedra-Pombal, Xabier
  5. Arias-Estévez, Manuel
  6. Nóvoa-Muñoz, Juan Carlos
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Year of publication: 2018

Volume: 8

Issue: 1

Pages: 57-73

Type: Article

DOI: 10.3232/SJSS.2018.V8.N1.05 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Spanish Journal of Soil Science: SJSS


Cited by

  • Scopus Cited by: 9 (27-01-2024)
  • Web of Science Cited by: 6 (14-10-2023)
  • Dimensions Cited by: 9 (06-01-2024)

SCImago Journal Rank

  • Year 2018
  • SJR Journal Impact: 0.228
  • Best Quartile: Q3
  • Area: Soil Science Quartile: Q3 Rank in area: 95/159

Scopus CiteScore

  • Year 2018
  • CiteScore of the Journal : 1.0
  • Area: Soil Science Percentile: 31

Journal Citation Indicator (JCI)

  • Year 2018
  • Journal Citation Indicator (JCI): 0.16
  • Best Quartile: Q4
  • Area: SOIL SCIENCE Quartile: Q4 Rank in area: 40/41


(Data updated as of 06-01-2024)
  • Total citations: 9
  • Recent citations (2 years): 2
  • Field Citation Ratio (FCR): 1.48


This study determined the distribution of total Hg (HgT) among aggregate size fractions in the A, E, Bh and Bs horizons of a representative temperate forest podzol. The aggregate distribution was dominated by the coarse sand size fraction (average of 55%) followed by fine sand (29%), fine silt (10%), coarse silt (4%) and clay (2%). In general, HgT mean values increased as the aggregate size become smaller: clay (170 ng g-1) > fine silt (130 ng g-1) > coarse silt (80 ng g-1) > fine sand (32 ng g-1) > coarse sand (14 ng g-1). Total Hg enrichment in clay-sized aggregates ranged from 2 to 11 times higher than the values shown by the bulk soil (< 2 mm). The accumulation of HgT in the finer size aggregates was closely related to total organic C, Na-pyrophosphate extracted C, metal (Al, Fe)-humus complexes and Al and Fe oxyhydroxides. Indeed, these parameters varied significantly (p < 0.05) with the aggregate size and their highest values were found in the finer fractions. This suggested the role of these soil compounds in the increase of the specific surface area per mass unit and negative charges in the smallest aggregates, favouring Hg retention. Mercury accumulation factor (HgAF) values reached up to 10.8 in the clay size aggregates, being close to 1 in sand size fractions. Regarding Hg enrichment factors (HgEF), they were < 4 (“moderate pollution” category) in most of the horizons and aggregate sizes. Grain size mass loading (GSFHg) revealed that finer fractions had a higher Hg loading than their mass fractions, with a notable contribution of fine silt which made up > 50% of HgT in Bh and Bs horizons. The potential ecological risk index (PERIHg) increased as the aggregate size decreased, with the highest values in the illuvial horizons (45-903) and lowest in the E horizon (3-363). Heterogeneous distribution of Hg in the soil aggregate size fractions must be considered for Hg determination for purposes such as critical loads, background values or environmental risk indices. In addition, Hg accumulation in finer aggregates could be of concern due to its potential mobility in forest soils, either transferred by leaching to groundwater and freshwaters or mobilized by runoff in surface horizons.

Funding information

This work was supported by the Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia) with a Reference Competitive Groups grant (ED431C2017/62) to BV1 Research Group. Xunta de Galicia is acknowledged by the pre-doctoral fellowship of A. G. A. (ED481A-2016/220). We also thank to the Seguridade Alimentaria e Desenvolvemente Sostible service of CACTI-University of Vigo for soil chemical characterization.

Bibliographic References

  • Acosta JA, Cano AF, Arocena JM, Debela F, Martínez-Martínez S. 2009. Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia city (Spain). Geoderma 149(1-2):101-9.
  • Aguilar J, Benayas J, Macías F. 1980. Procesos de edafogénesis. I. Podsolización. Anales de Edafología y Agrobiología 39:1895-1992.
  • Bertsch PM, Bloom PR. 1996. Aluminum. In: Sparks DL, editor. Methods of soil analysis. Part 3. Chemical methods. Madison: Soil Science Society of America. 517 p.
  • Biester H, Scholz C. 1997. Determination of mercury binding forms in contaminated soils: Mercury pyrolysis versus sequential extractions. Environ Sci Technol. 31(1):233-239.
  • Buurman P, Jongmans AG. 2005. Podzolisation and soil organic matter dynamics. Geoderma 125(1-2):71-83.
  • Cai M, McBride MB, Li K. 2016. Bioaccessibility of Ba, Cu, Pb, and Zn in urban garden and orchard soils. Environ Pollut. 208:145-152.
  • Do Valle CM, Santana GP, Augusti R, Egreja Filho FB, Windmöller CC. 2005. Speciation and quantification of mercury in oxisol, ultisol, and spodosol from Amazon (Manaus, Brazil). Chemosphere 58(6):779-792.
  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. 2013. Mercury as a global pollutant: Sources, pathways, and effects. Environ Sci Technol. 47(10):4967-4983.
  • Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio MI. 2005. Distribution and mobility of mercury in soils from an old mining area in Mieres, Asturias (Spain). Sci Total Environ. 346(1-3):200-212.
  • Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio I. 2014. Mercury availability by operationally defined fractionation in granulometric distributions of soils and mine wastes from an abandoned cinnabar mine. Environ Sci Process Impacts 16(5):1069-1075.
  • Ferro-Vázquez C, Nóvoa-Muñoz JC, Costa-Casais M, Klaminder J, Martínez-Cortizas A. 2014. Metal and organic matter immobilization in temperate podzols: A high resolution study. Geoderma 217-218:225-234.
  • Fiorentino JC, Enzweiler J, Angélica RS. 2011. Geochemistry of mercury along a soil profile compared to other elements and to the parental rock: Evidence of external input. Water Air Soil Pollut. 221(1-4):63-75.
  • García-Rodeja E, Nóvoa JC, Pontevedra X, Martínez-Cortizas A, Buurman P. 2004. Aluminium fractionation of European volcanic soils by selective dissolution techniques. Catena 56(1-3):155-83.
  • Gee GW and Bauder JW. 1986. Particle-size analysis. In: Klute A, editor. Methods of soil analysis. Part 1. Physical and mineralogical methods. Madison, WI: SSSA, ASA and SSSA. 383 p.
  • Gómez-Armesto A, Ferro-Vázquez C, Cutillas-Barreiro L, Costas-Casais M, Arias-Estévez M, Nóvoa-Muñoz JC, Martínez-Cortizas A. 2015. Distribution and accumulation of total Hg in high vertical resolution sampled temperate forest podzols from Galicia (NW Spain). In: Abstract Book of the 10th Iberian and 7th Iberoamerican Congress on Environmental Contamination and Toxicology; 2015 Jul 14-17; Vila Real, Portugal. p. 287. ISBN: 978-989-704-210-2.
  • Gong C, Ma L, Cheng H, Liu Y, Xu D, Li B, Liu F, Ren Y, Liu Z, Zhao C, et al. 2014. Characterization of the particle size fraction associated heavy metals in tropical arable soils from Hainan Island, China. J Geochem Explor. 139:109-114.
  • Guedron S, Grangeon S, Lanson B, Grimaldi M. 2009. Mercury speciation in a tropical soil association; consequence of gold mining on Hg distribution in French Guiana. Geoderma 153(3-4):331-346.
  • Gunda T, Scanlon TM. 2013. Topographical influences on the spatial distribution of soil mercury at the catchment scale. Water Air Soil Pollut. 224(4):1511.
  • Hakanson L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14(8):975-1001.
  • He N, Wu L, Wang Y, Han X. 2009. Changes in carbon and nitrogen in soil particle-size fractions along a grassland restoration chronosequence in Northern China. Geoderma 150(3-4):302-308.
  • Inácio MM, Pereira V, Pinto MS. 1998. Mercury contamination in sandy soils surrounding an industrial emission source (Estarreja, Portugal). Geoderma 85(4):325-339.
  • IUSS Working Group WRB. 2006. World reference base for soil resources 2006. World Soil Resources Reports No. 103. Rome: FAO.
  • Jing YD, He ZL, Yang XE. 2007. Effects of pH, organic acids, and competitive cations on mercury desorption in soils. Chemosphere 69(10):1662-1669.
  • Li Q, Ji H, Qin F, Tang L, Guo X, Feng J. 2014. Sources and the distribution of heavy metals in the particle size of soil polluted by gold mining upstream of Miyun reservoir, Beijing: Implications for assessing the potential risks. Environ Monit Assess. 186(10):6605-6626.
  • Li H, Ji H, Shi C, Gao Y, Zhang Y, Xu X, Ding H, Tang L, Xing Y. 2017. Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health. Chemosphere 172:505-515.
  • Ljung K, Selinus O, Otabbong E, Berglund M. 2006. Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Appl Geochem. 21(9):1613-1624.
  • Luo XS, Yu S, Li XD. 2011. Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health. Environ Pollut. 159(5):1317-1326.
  • Mason RP, Sheu G. 2002. Role of the ocean in the global mercury cycle. Global Biogeochem Cycles 16(4):40-41.
  • Parry SA, Hodson ME, Oelkers EH, Kemp SJ. 2011. Is silt the most influential soil grain size fraction? Appl Geochem. 26(SUPPL.):S119-S122.
  • Peech M, Alexander LT, Dean LA, Reed JF. 1947. Methods of soil analysis for soil fertility investigations. Washington, D.C.: U.S. Dep Agr Cir 757, US Gov Print Office.
  • Peña-Rodríguez S, Pontevedra-Pombal X, Gayoso EGR, Moretto A, Mansilla R, Cutillas-Barreiro L, Arias-Estévez M, Nóvoa-Muñoz JC. 2014. Mercury distribution in a toposequence of sub-antarctic forest soils of Tierra del Fuego (Argentina) as consequence of the prevailing soil processes. Geoderma 232-234:130-140.
  • Qin F, Ji H, Li Q, Guo X, Tang L, Feng J. 2014. Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River. J Geochem Explor. 138:33-49.
  • Richardson JB, Friedland AJ, Engerbretson TR, Kaste JM, Jackson BP. 2013. Spatial and vertical distribution of mercury in upland forest soils across the Northeastern United States. Environ Pollut. 182:127-134.
  • Roulet M, Lucotte M. 1995. Geochemistry of mercury in pristine and flooded ferralitic soils of a tropical rain forest in French Guiana, South America. Water Air Soil Pollut. 80(1-4):1079-1088.
  • Roulet M, Lucotte M, Saint-Aubin A, Tran S, Rhéault I, Farella N, De Jesus Da Silva E, Dezencourt J, Sousa Passos CJ, Santos Soares G, et al. 1998. The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chao formation of the lower Tapajos River Valley, Para State, Brazil. Sci Total Environ. 223(1):1-24.
  • Sauer D, Sponagel H, Sommer M, Giani L, Jahn R, Stahr K. 2007. Podzol: Soil of the year 2007. A review on its genesis, occurrence, and functions. J Plant Nutr Soil Sci. 170(5):581-597.
  • Schlüter K. 1997. Sorption of inorganic mercury and monomethyl mercury in an iron-humus podzol soil of southern Norway studied by batch experiments. Environ Geol. 30(3-4):266-279.
  • Schuster E. 1991. The behaviour of mercury in the soil with special emphasis on complexation and adsorption processes - A review of the literature. Water Air Soil Pollut. 56(1):667-680.
  • Semlali RM, Van Oort F, Denaix L, Loubet M. 2001. Estimating distributions of endogenous and exogenous Pb in soils by using Pb isotopic ratios. Environ Sci Technol. 35(21):4180-4188.
  • Skyllberg U, Bloom PR, Qian J, Lin CM, Bleam WF. 2006. Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ Sci Technol. 40(13):4174-4180.
  • Smith-Downey NV, Sunderland EM, Jacob DJ. 2010. Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model. J Geophys Res G Biogeosci. 115(3): G03008.
  • Stemmer M, Gerzabek MH, Kandeler E. 1998. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biol Biochem. 30(1):9-17.
  • Sutherland RA. 2003. Lead in grain size fractions of road-deposited sediment. Environ Pollut. 121(2):229-237.
  • Tipping E, Lofts S, Hooper H, Frey B, Spurgeon D, Svendsen C. 2010. Critical limits for Hg(II) in soils, derived from chronic toxicity data. Environ Pollut. 158(7):2465-2471.
  • Xiao R, Zhang M, Yao X, Ma Z, Yu F, Bai J. 2016. Heavy metal distribution in different soil aggregate size classes from restored brackish marsh, oil exploitation zone, and tidal mud flat of the Yellow River delta. J Soils Sed. 16(3):821-830. Xin M, Gustin MS. 2007. Gaseous elemental mercury exchange with low mercury containing soils: Investigation of controlling factors. Appl Geochem. 22(7):1451-1466.
  • Yongming H, Peixuan D, Junji C, Posmentier ES. 2006. Multivariate analysis of heavy metal contamination in urban dusts of Xi'an, Central China. Sci Total Environ. 355(1-3):176-186.
  • Yutong Z, Qing X, Shenggao L. 2016. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (Northeastern China). Environ Sci Pollut Res. 23(14):14600-14607.