Influencia de distintas estrategias de andamiaje para promover la participación del alumnado de secundaria en las prácticas científicas

  1. Crujeiras Pérez, Beatriz 1
  2. Jiménez Aleixandre, María Pilar 1
  1. 1 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Revista:
Enseñanza de las ciencias: revista de investigación y experiencias didácticas

ISSN: 0212-4521 2174-6486

Ano de publicación: 2018

Volume: 36

Número: 2

Páxinas: 23-42

Tipo: Artigo

DOI: 10.5565/REV/ENSCIENCIAS.2241 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Enseñanza de las ciencias: revista de investigación y experiencias didácticas

Resumo

This paper examines the adequacy of different teaching strategies to scaffold students’ engagement in scientific practices. The participants are two secondary teachers and their respective groups of 9th grade students attending Physics and Chemistry. The task requires students to investigate the effectiveness of two toothpastes to prevent cavities. For the analysis we examine the discourse of both teachers during the implementation of the task and we code their interventions according to a framework for scaffolding strategies developed by Van de Pol, Volman and Beishuizen (2010). The results point to differences in the strategies employed by the teachers, which affect to students’ performances for planning and carrying out investigations.

Información de financiamento

Al proyecto EDU2017-82915-R financiado por el Ministerio de Economía y Competitividad. A los docentes y estudiantes que participaron en el estudio.

Financiadores

Referencias bibliográficas

  • Alozie, N. M., Moje, E. B. y Krajcik, J. S. (2010). An Analysis of the Supports and Constraints for Scientific Discussion in High School Project-Based Science. Science Education, 94, pp. 395-427. https://doi.org/10.1002/sce.20365
  • Austin, R., Holding, B., Bell, J., y Daniels, S. (1991). Assessment Matters No. 7: Patterns and relationships in school science. London: School Examinations and Assessment Council.
  • Belland, B. R., Burdo, R. y Gu, J. (2015). A Blended Professional Development Program to Help a Teacher Learn to Provide One-to-One Scaffolding. Journal of Science Teacher Education, 26, pp. 263-289. https://doi.org/10.1007/s10972-015-9419-2
  • Chan, H-Y. y Chan, H-C. (2013). Scaffolding students’ online critiquing of expert and peer-generated molecular models of chemical reactions. International Journal of Science Education, 35(12), pp. 2028-2056. https://doi.org/10.1080/09500693.2012.733978
  • Christodoulou, A. (2011). The science classroom as a site of epistemic talk: Two case studies of science teachers and their students. Unpublished doctoral thesis. King’s College London.
  • Crujeiras-Pérez, B. y Jiménez-Aleixandre, M. P. (2015). Desafíos planteados por las actividades abiertas de indagación en el laboratorio: articulación de conocimientos teóricos y prácticos en las prácticas científicas. Enseñanza de las Ciencias, 33(1), pp. 63-84. https://doi.org/10.5565/rev/ensciencias.1469
  • Crujeiras-Pérez, B. y Jiménez-Aleixandre, M. P. (2017). High school students’ engagement in planning investigations: findings from a longitudinal study in Spain. Chemistry Education Research and Practice, 18, pp. 99-112. https://doi.org/10.1039/c6rp00185h
  • Duschl, R. A., Schweingruber, H. A. y Shouse, A. W. (2007). Taking Science to School. Learning and Teaching Science in grades K-8. Washington D. C: The National Academies Press.
  • Erduran, S. y Dagher, Z. (Eds.). (2014). Reconceptualizing the nature of science for science education: Scientific knowledge, practices and other family categories. Dordrecht, The Netherlands: Springer.
  • Ford, M. J. (2015). Educational implications of choosing «practice» to describe science in the next generation science standards. Science Education, 99(6), https://doi.org/10.1002/sce.21188
  • Hannafin, M., Land, S. y Oliver, K. (1999). Open ended learning environments: foundations, methods, and models. En C. Reigeluth (Ed.). Instructional Design Theories and Models (Vol. II). Mahway (NJ): Erlbaum.
  • Hmelo-Silver, C. E., Duncan, R. G. y Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42, pp. 99-107. https://doi.org/10.1080/00461520701263368
  • Hogan, K. y Pressley, M. (1997). Scaffolding Student Learning: Instructional Approaches y Issues. Cambridge (M.A.): Brookline Books.
  • Holbrook, J. y Kolodner, J. L. (2000). Scaffolding the development of an inquiry-based (science) classroom. En B. J. Fishman y S. F. O’ConnorDivelbiss (Eds.). Proceedings of the Fourth International Conference of the Learning Sciences (pp. 221-27). Ann Arbor: University of Michigan.
  • Hsu, Y-S., Lai, T-L. y Hsu, W-H. (2015). A design model for distributed scaffolding for InquiryBased Learning. Research in Science Education, 45, pp. 241-273. https://doi.org/10.1007/s11165-014-9421-2
  • Kanari, Z. y Millar, R. (2004). Reasoning from data: How students collect and interpret data in science investigations. Journal of Research in Science Teaching, 41(7), pp. 748-769. https://doi.org/10.1002/tea.20020
  • Kukkonen, J. E., Kärkkäinen, S., Dillon, P. y Keinonen, T. (2014). Scaffolded SimulationBased Inquiry Learning on Fifth-Graders’ Representations of the Greenhouse Effect. International Journal of Science Education, 36(3), pp. 406-424. https://doi.org/10.1080/09500693.2013.782452
  • Masnick, A. M. y Morrison, B. J. (2002). Reasoning from data: The effect of sample size and variability on children’s and adults’ conclusions. En W. D. Gray y C. D. Schunn (Eds.). Proceedings of the 24th annual conference of the Cognitive Science Society (pp. 643-648). Mahwah, NJ: Lawrence Erlbaum.
  • McNeill, K. L. y Krajcik, J. S. (2009). Synergy between teacher practices and curricular scaffolds to support students in using domain-specific and domain-general knowledge in writing arguments to explain phenomena. Journal of the Learning Sciences, 18(3), pp. 41-460. https://doi.org/10.1080/10508400903013488
  • Mercer, N. y Fisher, E. (1992). How do teachers help children to learn? An analysis of teachers’ interventions in computer-based activities. Learning and Instruction, 2 (4), 339-355. https://doi.org/10.1016/0959-4752(92)90022-e
  • Mulder, Y. G., Bollen, L., de Jong, T. y Lazonder, A. W. (2016). Scaffolding Learning by Modelling: the effects of partially worked-out models. Journal of Research in Science Teaching, 53(3), pp. 502-523. https://doi.org/10.1002/tea.21260
  • National Research Council (NRC) (2012). A framework for K12 Science Education: practices, crosscutting concepts and core ideas. Washington DC: National Academy Press.
  • Osborne, J. (2011). Science teaching methods: a rationale for practices. School Science Review, 93(343).
  • Palincsar, A. y Brown, A. (1984). Reciprocal teaching of comprehension fostering and monitoring activities. Cognition and Instruction, 1, pp. 117-175. https://doi.org/10.1207/s1532690xci0102_1
  • Puntambekar, S. y Kolodoner, J. K. (2005). Toward implementing distributed scaffolding: helping students learn science from design. Journal of Research in Science Teaching, 42(2), pp. 185-271. https://doi.org/10.1002/tea.20048
  • Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., Edelson, D. y Soloway, E. (2004). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13(3), pp. 337-386. https://doi.org/10.1207/s15327809jls1303_4
  • Reigosa, C. y Jiménez-Aleixandre, M. P. (2007). Scaffolded problem-solving in the physics and chemistry laboratory: Difficulties hindering students’ assumptions of responsibility. International Journal of Science Education, 29(3), pp. 307-329. ttps://doi.org/10.1080/09500690600702454
  • Reiser, B. J. (2004). Scaffolding Complex Learning: The Mechanisms of Structuring and Problematizing Student Work. The Journal of the Learning Sciences, 13(3), pp. 273-304. https://doi.org/10.1207/s15327809jls1303_2
  • Reiser, B. J., Berland, L. K. y Kenyon, L. (2012). Engaging Students in Scientific Practices of Explanation and Argumentation. Science and Children, 49(8), pp. 8-13.
  • Stone, C. A. (1998). The metaphor of scaffolding: Its utility for the field of learning disabilities. Journal of Learning Disabilities, 31, pp. 344-364. https://doi.org/10.1177/002221949803100404
  • Van de Pol, J. y Elbers, E. (2013). Scaffolding student learning: a micro analysis of teacher-student interaction. Learning, Culture and Social Interaction, 2, pp. 32-41. https://doi.org/10.1016/j.lcsi.2012.12.001
  • Van de Pol, J., Volman, M. y Beishuizen, J. (2010). Scaffolding in teacher student interaction: A decade of research. Educational Psychology Review, 22(3), pp. 271-296. https://doi.org/10.1007/s10648-010-9127-6
  • Van der Valk, T. y De Jong, O. (2009). Scaffolding Teachers in Open-Inquiry Teaching. International Journal of Science Education, 31(6), pp. 829-850. https://doi.org/10.1080/09500690802287155
  • Vigotsky, L. S. (1979). El desarrollo de los procesos psicológicos superiores. Barcelona: Crítica, D. L.
  • Wood, D., Bruner J. y Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, pp. 89-100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
  • Zangori, L., Forbes, C. T. y Schwarz, C. V. (2015). Exploring the Effect of Embedded Scaffolding Within Curricular Tasks on Third-Grade Students’ Model-Based Explanations about Hydrologic Cycling. Science and Education, 24, pp. 957-981. https://doi.org/10.1007/s11191-015-9771-9