Pilidium lythri Is Associated with Bunch Rot of Grapevine (Vitis vinifera)

  1. Olga Aguín 1
  2. Vanesa Ferreiroa 1
  3. Jesús M. González-Jartín 2
  4. Amparo Alfonso 2
  5. Luis M. Botana 2
  6. J. Pedro Mansilla 1
  7. María J. Sainz 2
  1. 1 Estación Fitopatolóxica Areeiro, Deputación de Pontevedra
  2. 2 Universidade de Santiago de Compostela
    info
    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

    Localización geográfica de la organización Universidade de Santiago de Compostela
Revista:
American Journal of Enology and Viticulture

ISSN: 0002-9254

Año de publicación: 2018

Volumen: 69

Número: 4

Páginas: 410-416

Tipo: Artículo

DOI: 10.5344/AJEV.2018.17093 SCOPUS: 2-s2.0-85054607955 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: American Journal of Enology and Viticulture

Objetivos de desarrollo sostenible

Resumen

Bunch rot of Vitis vinifera is frequently caused by a complex of filamentous fungi. In a study on non-Botrytis fungi associated with bunch rot at harvest in northwestern Spain, rotting berries showing pink masses were observed in bunches of V. vinifera Albariño in one vineyard that experienced prolonged warm, moist conditions before harvest. The aim of this work was to identify the fungal species and determine its pathogenicity on grapes. Fungal isolates not corresponding morphologically to any known genus associated with bunch rot were obtained from the pink masses. Morphological and molecular phylogenetic analyses revealed that the isolates belonged to Pilidium lythri, an opportunistic pathogen causing tan-brown rot on strawberry. Most frequent non-Botrytis grape-rotting fungi at the vineyard were Penicillium brevicompactum, Penicillium expansum, and Talaromyces purpurogenus, while P. lythri had a low isolation frequency. Pathogenicity tests showed that P. lythri caused tan-brown rot in berries of the V. vinifera table grape varieties Regal Seedless and Red Globe. That P. lythri can directly infect healthy grape berries suggests that it may be a true pathogen associated with bunch rot on grapevine. Its presence on berries may contribute to postharvest decay of table and wine grapes.

Referencias bibliográficas

  • Almenar E, Hernández-Muñoz P, Lagarón JM, Catalá R and Gavara R. 2006. Controlled atmosphere storage of wild strawberry fruit (Fragaria vesca L.). J Agric Food Chem 54:86-91.
  • Ayoubi N, Soleimani MJ and Zare R. 2016. Pilidium concavum, causing tan-brown rot on strawberry in Iran. J Plant Pathol 98:667-669.
  • Brown JKM and Hovmøller MS. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537-541.
  • Debode J, Van Hemelrijck W, Heungens K, Maes M and Creemers P. 2011. First report of Pilidium concavum causing tan-brown rot on strawberry fruit in Belgium. Plant Dis 95:1029.1.
  • DO Rías Baixas. 2017. Datos/Estructura de la producción. http://doriasbaixas.com/public/manager.php?p=Estructura (accessed 15 Sept 2017).
  • Fernández-Ortuño D, Bryson PK and Schnabel G. 2014. First report of Pilidium concavum causing tan-brown rot on strawberry nursery stock in South Carolina. Plant Dis 98:1010.2.
  • Gabler FM, Smilanick JL, Mansour M, Ramming DW and Mackey BE. 2003. Correlations of morphological, anatomical, and chemical features of grape berries with resistance to Botrytis cinerea. Phytopathology 93:1263-1273.
  • Hewitt WB. 1974. Rots and bunch rots of grapes. Calif AES Bull 868.
  • Hillis DM and Bull JJ. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182-192.
  • Holz G, Gütschow M, Coertze S and Calitz FJ. 2003. Occurrence of Botrytis cinerea and subsequent disease expression at different positions on leaves and bunches of grape. Plant Dis 87:351-358.
  • Johnston PR, Seifert KA, Stone JK, Rossman AY and Marvanová L. 2014. Recommendations on generic names competing for use in Leotiomycetes (Ascomycota). IMA Fungus 5:91-120.
  • Kassemeyer HH and Berkelmann-Löhnertz B. 2009. Fungi of grapes. In Biology of Microorganisms on Grapes, in Must and in Wine. König H et al. (eds.), pp. 61-87. Springer-Verlag, Berlin, Heidelberg.
  • La Guerche S, Dauphin B, Pons M, Blancard D and Darriet P. 2006. Characterization of some mushroom and earthy off-odors microbially induced by the development of rot on grapes. J Agric Food Chem 54:9193-9200.
  • Lopes UP, Zambolim L, Lopes UN, Pereira OL and Costa H. 2010. First report of Pilidium concavum causing tan-brown rot in strawberry fruits in Brazil. Plant Pathol 59:1171-1172.
  • McKinney HH. 1923. Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. J Agric Res 26:195-218.
  • Nair NG. 1985. Fungi associated with bunch rot of grapes in the Hunter Valley. Aust J Agr Res 36:435-442.
  • Palm ME. 1991. Taxonomy and morphology of the synanamorphs Pilidium concavum and Hainesia lythri (Coelomycetes). Mycologia 83:787-796.
  • Phillips AJL. 1998. Botryosphaeria dothidea and other fungi associated with excoriose and dieback of grapevines in Portugal. J Phytopathol 146:327-332.
  • Ribéreau-Gayon P, Dubourdieu D, Donèche B and Lonvaud A. 2006. The grape and its maturation. In Handbook of Enology, Volume 1: The Microbiology of Wine and Vinifications. 2nd ed., pp. 241-297. John Wiley & Sons, Ltd., Chichester, UK.
  • Rossman AY, Aime MC, Farr DF, Castlebury LA, Peterson KR and Leahy R. 2004. The coelomycetous genera Chaetomella and Pilidium represent a newly discovered lineage of inoperculate discomycetes. Mycol Prog 3:275-290.
  • Rousseaux S, Diguta CF, Radoï-Matei F, Alexandre H and Guilloux-Bénatier M. 2014. Non-Botrytis grape-rotting fungi responsible for earthy and moldy off-flavors and mycotoxins. Food Microbiol 38:104-121.
  • Spadaro D, Patharajan S, Lorè A, Garibaldi A and Gullino ML. 2012. Ochratoxigenic black species of Aspergilli in grape fruits of northern Italy identified by an improved PCR-RFLP procedure. Toxins 4:42-54.
  • Steel CC, Blackman JW and Schmidtke LM. 2013. Grapevine bunch rots: Impacts on wine composition, quality, and potential procedures for the removal of wine faults. J Agric Food Chem 61:5189-5206.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M and Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731-2739.
  • Tournas VH and Katsoudas E. 2005. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int J Food Microbiol 105:11-17.
  • White TJ, Bruns T, Lee S and Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications. Innis MA et al. (eds.), pp. 315-322. Academic Press, San Diego, CA.
  • Zoffoli JP and Latorre BA. 2011. Table grape (Vitis vinifera L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits. Volume 3: Cocona to Mango. Yahia EM (ed.), pp. 179-212. Woodhead Publishing Limited, Cambridge, UK.