Asfericidad corneal en una población de adultos jóvenesImplicaciones clínicas

  1. E Yebra-Pimentel
  2. JM González-Méijome
  3. A Cerviño
  4. MJ Giráldez
  5. J González-Pérez
  6. MA Parafita
Journal:
Archivos de la Sociedad Española de Oftalmologia

ISSN: 0365-6691

Year of publication: 2004

Volume: 79

Issue: 8

Pages: 385-391

Type: Article

DOI: 10.4321/S0365-66912004000800006 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Archivos de la Sociedad Española de Oftalmologia

Abstract

Purpose: To determine the relevance of the different ocular optical components in the refractive state of young adults, paying special attention to the corneal topography represented by the asphericity value. Subjects and methods: Corneal topographies and ultrasonic biometries were obtained from 109 university students with different refractive errors (spherical equivalent range: +3.25 D to -11.00 D). A regression study was performed in order to establish the relationships between corneal asphericity and refractive error, as well as other ocular optical components related to the emmetropization mechanism of the eye. Results: The mean asphericity values were -0.23 (SD 0.08, range: -0.42 to -0.03). All the values correspond to the mathematical description of the prolate ellipse, most commonly accepted for the normal human cornea. The statistical correlation between asphericity and equivalent refractive error was not significant, but a significant correlation was found for the asphericity with respect to the radius of curvature, vitreous chamber depth and axial length. Conclusions: 1) The asphericity values support the generalised morphology of the prolate cornea as the standard. The influence of this configuration on the contact lens fit, refractive surgery or the visual performance of the eye are discussed. 2) Results suggest that, although a relationship between axial length and corneal topography actually exists, it is not likely that the latter has implications for the emmetropization mechanisms which determine the refractive state of the adult eye.

Bibliographic References

  • Evardson, WT, Douthwaite, WA.. (1999). Contact lens back surface specifications derived from the EyeSys videokeratoscope. Contact Lens and Anterior Eye. 22. 76-82
  • Yebra-Pimentel, E, Giraldez, MJ, Arias, FL, Gonzalez, J, Gonzalez, JM, Parafita, MA. (2001). Rigid gas permeable contact lens and corneal topography. Ophthalmic Physiol Opt. 21. 236-242
  • Gonzalez-Meijome, JM, Gonzalez-Perez, J, Cerviño, A, Yebra-Pimentel, E, Parafita, MA.. (2003). Changes in corneal structure with continuous wear of high-Dk soft contact lenses: a pilot study. Optom Vis Sci. 80. 440-446
  • Applegate, RA, Hilmantel, G, Howland, HC, Tu, EY, Starck, T, Zayac, EJ.. (2000). Corneal first surface optical aberrations and visual performance. J Refract Surg. 16. 507-514
  • Patel, S, Marshall, J.. (1996). Corneal asphericity and its implications for photorefractive keratectomy: a mathematical model. J Refract Surg. 12. 347-351
  • Holmes-Higgin, DK, Baker, PC, Burris, TE, Silvestrini, TA.. (1999). Characterization of the aspheric corneal surface with intraestromal corneal ring segments. J Refract Surg. 15. 520-528
  • Gatinel, D, Hoang-Xuan, T, Azar, DT.. (2001). Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model. Invest Ophthalmol Vis Sci. 42. 1736-1742
  • Chastang, PJ, Borderie, VM, Carvajal-Gonzalez, S, Rostene, W, Laroche, L.. (2000). Automated keratoconus detection using the EyeSys videokeratoscope. J Cataract Refract Surg. 26. 675-683
  • Romero-Caballero, MD, Gutiérrez Ortega, AR, Miralles De Imperial, J, Canteras Jordana, M.. (2000). Desarrollo de un nuevo índice topográfico de regularidad corneal. Arch Soc Esp Oftalmol. 75. 765-770
  • Mandell, RB.. (1992). Everett Kinsey Lecture: The enigma of the corneal contour. CLAO J. 18. 267-273
  • Lindsay, R, Smith, G, Atchison, D.. (1998). Descriptors of corneal shape. Optom Vis Sci. 75. 156-158
  • Garner, LF, Meng, CK, Grosvenor, TP, Mohidin, N.. (1990). Ocular dimensions and refractive power in Malay and Melanesian children. Ophthalmic Physiol Opt. 10. 234-238
  • Grosvenor, T, Scott, R.. (1994). Role of the axial length/corneal radius ratio in determining the refractive state of the eye. Optom Vis Sci. 71. 573-579
  • Goh, WS, Lam, CS.. (1994). Changes in refractive trends and optical components of Hong Kong Chinese aged 19-39 years. Ophthalmic Physiol Opt. 14. 378-382
  • Parafita, M, Perez, MV, Yebra-Pimentel, E, Giraldez, MJ, Gonzalez, J.. (1998). Study of the correlations between refractive state and the ocular optic components in a young-adult population. Canadian J Optom. 60. 217-221
  • Grosvenor, T, Goss, DA.. (1998). Role of the cornea in emmetropia and myopia. Optom Vis Sci. 75. 132-145
  • Sheridan, M, Douthwaite, WA.. (1989). Corneal asphericity and refractive error. Ophthalmic Physiol Opt. 9. 235-238
  • Carney, LG, Mainstone, JC, Henderson, BA.. (1997). Corneal Topography and myopia: A cross-sectional study. Invest Ophthalmol Vis Sci. 38. 311-320
  • Budak, K, Khater, TT, Friedman, NJ, Holladay, JT, Koch, DD.. (1999). Evaluation of relationships among refractive and topographic parameters. J Cataract Refract Surg. 25. 814-820
  • Horner, DG, Soni, PS, Vyas, N, Himebaugh, NL.. (2001). Longitudinal changes in corneal asphericity in myopia. Optom Vis Sci. 77. 198-203
  • Holladay, JT.. (1997). Corneal topography using the Holladay Diagnostic Summary. J Cataract Refract Surg. 23. 209-221
  • Kiely, PM, Carney, LG, Smith, G.. (1982). Diurnal variations of corneal topography and thickness. Am J Optom Physiol Opt. 59. 976-982
  • Townsley, MG.. (1970). New knowledge of the corneal contour. Contacto. 14. 38-43
  • Eghbali, F, Yeung, KK, Maloney, RK.. (1995). Topographic determination of corneal asphericity and its lack of effect on the refractive outcome of radial keratotomy. Am J Ophthalmol. 119. 275-280
  • Joe, JJ, Marsden, HJ, Edrington, TB.. (1996). The relationship between corneal eccentricity and improvement in visual acuity with orthokeratology. J Am Optom Assoc. 67. 87-97
  • Holladay, JT, Dudeja, DR, Chang, J.. (1999). Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing, and corneal topography. J Cataract Refract Surg. 25. 663-669
  • Applegate, RA, Hilmantel, G, Howland, HC.. (1996). Corneal aberrations increase with the magnitude of radial keratotomy refractive correction. Optom Vis Sci. 73. 585-589
  • Fleming, JF.. (1993). Corneal asphericity and visual function after radial keratotomy. Cornea. 12. 233-240