Desafíos planteados por las actividades abiertas de indagación en el laboratorioarticulación de conocimientos teóricos y prácticos en las prácticas científicas

  1. Beatriz Crujeiras Pérez 1
  2. María Pilar Jiménez Aleixandre 1
  1. 1 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Revista:
Enseñanza de las ciencias: revista de investigación y experiencias didácticas

ISSN: 0212-4521 2174-6486

Año de publicación: 2015

Volumen: 33

Número: 1

Páginas: 63-84

Tipo: Artículo

DOI: 10.5565/REV/ENSCIENCIAS.1469 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Enseñanza de las ciencias: revista de investigación y experiencias didácticas

Resumen

Se analizan las prácticas de contextualización de tres pequeños grupos de alumnado de máster durante la realización de una indagación en el laboratorio que supone la participación en prácticas científicas. El objetivo es examinar los desafíos planteados por una actividad abierta, a través del análisis del proceso de contextualización, es decir de conexión del conocimiento teórico relevante al contexto (cómo evitar el oscurecimiento en las manzanas cortadas), transformándolo en decisiones y acciones prácticas. Los resultados indican las dificultades de los participantes para movilizar los conocimientos teóricos relevantes y articularlos con los conocimientos prácticos. Se discuten implicaciones para el diseño de actividades abiertas que pretendan la inmersión en prácticas científicas, y para planificar el andamiaje.

Referencias bibliográficas

  • BOWLES, R. D., and SAROKA., J. M., ARCHER, S. D. y BONASSAR, L. J. (2012). Novel Model-Based Inquiry of Ionic Bonding in Alginate Hydrogels Used in Tissue Engineering for High School Students. Journal of Chemical Education, 89, 1308-1311. http://dx.doi.org/10.1021/ed200651f
  • CAPPS, D. K., CRAWFORD, B. A. y CONSTAS, M. A. (2012). A review of empirical literature on inquiry professional development: alignment with best practices and a critique of the findings. Journal of Science Teacher Education, 23, 291-318. http://dx.doi.org/10.1007/s10972-012-9275-2
  • CHEUNG, D. (2005). Investigating toothpastes through Inquiry-based practical work. Science Activities: Classroom projects and curriculum ideas, 42 (3), 31-38.
  • CHINN, C. A. y MALHOTRA, B. A. (2002). Epistemologically authentic inquiry in schools: a theoretical framework for evaluating inquiry tasks. Science Education, 86 (2), 175-218. http://dx.doi.org/10.1002/sce.10001
  • CUEVAS, P., OKLEE, L., HART, J. y DEAKTOR, R. (2005). Improving Science Inquiry with elementary students of diverse backgrounds. Journal of Research in Science Teaching, 42(3), 337-357. http://dx.doi.org/10.1002/tea.20053
  • DENZIN, N. K. y LINCOLN, Y. S. (2000). The discipline and practice of qualitative research. En N. K. Denzin y Y. S. Lincoln (eds.). Handbook of Qualitative Research (1-28). Second Edition. California: Sage Publications.
  • ETKINA, E., KARELINA, A., RUIBAL-VILLASENOR, M., ROSENGRANT, D., JORDAN, R. y HMELO-SILVER, C. (2010). Design and reflection help students develop scientific abilities: Learning in introductory physics laboratories. Journal of the Learning Sciences, 19(1), 54-98. http://dx.doi.org/10.1080/10508400903452876
  • GEE, J. P. (2005). An introduction to discourse analysis: theory and method. New York: Routledge.
  • GIRAULT, I., D'HAM, C., NEY, M., SÁnchez, E. y WAJEMAN, C. (2012). Characterizing the experimental procedure in science laboratories: a preliminary step towards students experimental design. International Journal of Science Education, 34(6), 825-854. http://dx.doi.org/10.1080/09500693.2011.569901
  • HODSON, D. (1990). A critical look at practical work in school science. The School Science Review, 71 (256), 33-40.
  • HÖGSTRÖM, P., OTTANDER, C. y BENCKERT, S. (2010). Lab work and learning in secondary school chemistry: the importance of teacher and student interaction. Research in Science Education, 40, 505-523. http://dx.doi.org/10.1007/s11165-009-9131-3
  • HOLBROOK, J. y KOLODNER, J. L. (2000). Scaffolding the development of an inquiry-based (science) classroom. En B. J. Fishman y S. F. O'Connor-Divelbiss (eds.). Proceedings of the Fourth International Conference of the Learning Sciences (pp. 221-27). Ann Arbor: University of Michigan.
  • JIMÉnez ALEIXANDRE, M. P. (2010). 10 Ideas Clave. Competencias en argumentación y uso de pruebas. Barcelona: Graó.
  • JIMÉnez ALEIXANDRE, M. P. y REIGOSA, C. (2006). Contextualizing practices across epistemic levels in the chemistry laboratory. Science Education, 90 (4), 707-733. http://dx.doi.org/10.1002/sce.20132
  • KANARI, Z. y MILLAR, R. (2004). Reasoning from data: how students collect and interpret data in science investigations. Journal of Research in Science Teaching, 41(7), 748-769. http://dx.doi.org/10.1002/tea.20020
  • KELLY, G. J. (2008). Discourse in science classrooms. En Abell, S. K. y Lederman, N. G. (eds.). Handbook of research on science education, 443-469. Mahwah, NJ: Lawrence Erlbaum Associates.
  • KELLY, G. J., CHEN, C. y CRAWFORD, T. (1998). Methodological considerations for studying science in-the-making in Educational settings. Research in Science Education, 28(1), 23-49. http://dx.doi.org/10.1007/BF02461640
  • KRAJCIK, J., and BLUMENFELD., P. C., MARX, R. W., BASS, K. M. y FREDRICKS, J. (1998). Inquiry in projectbased science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3/4), 313-350. http://dx.doi.org/10.1080/10508406.1998.9672057
  • http://dx.doi.org/10.1207/s15327809jls0703&4-3
  • LATOUR, B. y WOOLGAR, S. (1986). Laboratory life: the construction of scientific facts. New Yersey: University Press.
  • LEACH, J. y SCOTT, P. (2003). Individual and sociocultural views of learning in Science Education, Science y Education, 12, 91-113. http://dx.doi.org/10.1023/A:1022665519862
  • LEE, H.-S. y SONGER, N. B. (2003). Making authentic science accessible to students. International Journal of Science Education, 25, 923-948. http://dx.doi.org/10.1080/09500690305023
  • LEMKE, J. L. (1990). Talking science: language, learning and values. New Yersey: Ablex
  • LONGINO, H. E. (1990). Science as social knowledge: Values and objectivity in scientific inquiry. Princeton: Princeton University Press.
  • LUNETTA, V. N., HOFSTEIN, A. y CLOUGH, M. P. (2008). Learning and teaching in the school science laboratory: an analysis of research theory and practice. En S. K. Abell y N. G. Lederman (eds.). Handbook of research on Science Education, pp. 394-441.
  • MERCER, N. y FISHER, E. (1992). How do teachers help children to learn? An analysis of teachers' interventions in computer-based activities. Learning and Instruction, 2 (4), 339-355. http://dx.doi.org/10.1016/0959-4752(92)90022-E
  • NGSS Lead States (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.
  • National Research Council (1996). National Science Education Standards. Washington, DC: National Academies Press.
  • Organisation for Economic Cooperation and Development (OECD) (2013). PISA 2015 Draft Science Framework. OECD.
  • OSBORNE, J. (2014). Scientific practices and inquiry in the science classroom. En N. G. Lederman, y S. K. Abell (eds.). Handbook of Research on Science Education, Volume II (pp. 1835-1901). New York: Routledge.
  • PUNTAMBEKAR, S. y KOLODONER, J. K. (2005). Toward implementing distributed scaffolding: helping students learn science from design. Journal of research in science teaching, 42(2), 185-271. http://dx.doi.org/10.1002/tea.20048
  • REIGOSA, C. y Jiménez ALEIXANDRE, M. P. (2000). La cultura científica en la resolución de problemas en el laboratorio. Enseñanza de las Ciencias, 18 (2), 275-284.
  • REIGOSA, C. y JIMÉnez-ALEIXANDRE, M. P. (2007). Scaffolded problem-solving in the physics and chemistry laboratory: Difficulties hindering students' assumptions of responsibility. International Journal of Science Education, 29(3), 307-329. http://dx.doi.org/10.1080/09500690600702454
  • REISER, B. J. (2004). Scaffolding Complex Learning: The Mechanisms of Structuring and Problematizing Student Work. The Journal of the Learning Sciences, 13(3), 273-304.
  • REISER, B. J., TABAK, I., SANDOVAL, W. A., SMITH, B. K., STEINMULLER, F. y LEONE, A. J. (2001). BGuILE: Strategic and conceptual scaffolds for scientific inquiry in biology classrooms. En S. M. Carver y D. Klahr (eds.). Cognition and instruction: Twenty-five years of progress (pp. 263-305). Mahwah, NJ: Erlbaum. http://dx.doi.org/10.1207/s15327809jls1303-2
  • SWANBORN, P. G. (2010). Case study research: what, why and how? California: Sage Publications.
  • TOULMIN, S. (1958). The uses of argument. Cambridge: University Press.
  • VYGOTSKY, L. S. (1979). El desarrollo de los procesos psicológicos superiores. Barcelona: Crítica, D. L.
  • ZIMMERMAN, C. (2000). The development of scientific reasoning skills. Developmental Review, 20, 99-149. http://dx.doi.org/10.1006/drev.1999.0497