Nanoterapias oncológicas: aplicaciones actuales y perspectivas futuras

  1. Lollo, Giovanna 1
  2. Rivera Rodríguez, Gustavo 1
  3. Torres López, Dolores 1
  4. Alonso Fernández, María José 1
  1. 1 Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela
Revista:
Anales de la Real Academia Nacional de Farmacia

ISSN: 1697-4298 0034-0618

Ano de publicación: 2011

Número: 4

Páxinas: 76-98

Tipo: Artigo

Outras publicacións en: Anales de la Real Academia Nacional de Farmacia

Resumo

La aplicación de la nanotecnología en la terapia del cáncer ha despertado gran interés en los últimos años. Ello se debe a que la nanotecnología aporta soluciones encaminadas en general a mejorar la eficacia y reducir la toxicidad de los tratamientos oncológicos. En este artículo, se resumen los avances más significativos en el diseño y desarrollo de nanomedicamentos oncológicos en sus diversas presentaciones, como son los liposomas, las nanopartículas, las micelas poliméricas y los conjugados. Además, se destacan algunas de las nuevas estrategias adoptadas en el tratamiento del cáncer tales como la terapia génica, la terapia fotodinámica y el llamado teranóstico

Referencias bibliográficas

  • Diccionario del Cáncer. National Cancer Institute. (2011). http://www.cancer.gov/diccionario/.
  • Parkin, D.M. (2001). Global cancer statistics in the year 2000. The Lancet Oncology, 2(9), 533-543.
  • Ferrari, M. (2005). Cancer nanotechnology: opportunities & challenges. Nat Rev Cancer, 5(3), 161-171.
  • Maeda, H., et al. (2009). Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. European Journal of Pharmaceutics & Biopharmaceutics, 71(3), 409-419.
  • Fang, J., & al. (2011). The EPR effect, Unique features of tumor blood vessels for drug delivery, factors involved, & limitations & augmentation of the effect. Advanced Drug Delivery Reviews, 63(3), 136-151.
  • Torchilin, V. (2011). Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev, 63(3), 131-135.
  • Danhier, F., & al. (2010). To exploit the tumor microenvironment: Passive & active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, 148(2), 135-146.
  • Owens Iii, D.E., & al. (2006). Opsonization, biodistribution, & pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics, 307(1), 93-102.
  • Gabizon, A., & al. (1992). The role of surface charge & hydrophilic groups on liposome clearance in vivo. Biochimica & Biophysica Acta (BBA) - Biomembranes, 1103(1), 94-100.
  • Howard, M.D., & al. (2008). PEGylation of nanocarrier drug delivery systems: State of the art. Journal of Biomedical Nanotechnology, 4(2), 133-148.
  • Molineux, G. (2002). Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treatment Reviews, 28, Supplement 1, 13-16.
  • Vila-Jato, J. L. (2009). Nanotecnología Farmacéutica: Realidades y posibilidades farmacoterapéuticas. Monografías, Madrid, España: Instituto de España, Real Academia Nacional de Farmacia. 409.
  • Byrne, J. D., & al. (2008). Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews, 60(15), 1615-1626.
  • Wang, M. & al. (2010). Targeting nanoparticles to cancer. Pharmacological Research, 62(2), 90-99.
  • Kalli, K.R., & al. (2008). Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecologic Oncology, 108(3), 619-626.
  • Oyarzun-Ampuero, F.A., & al. (2011). A new drug nanocarrier consisting of polyarginine & hyaluronic acid. European Journal of Pharmaceutics & Biopharmaceutics, 79(1), 54-57.
  • Mizrahy, S., & al. (2011). Hyaluronan-coated nanoparticles: The influence of the molecular weight on CD44-hyaluronan interactions & on the immune response. J Control Release, 156, 231-238.
  • Schliemann, C., & al. (2007). Antibody-based targeting of the tumor vasculature. Biochimica & Biophysica Acta (BBA) - Reviews on Cancer, 1776(2), 175-192.
  • Fay, F., & al. (2011). Antibody-targeted nanoparticles for cancer therapy. Immunotherapy, 3(3), 381-394.
  • Lian, T., & al. (2001). Trends & developments in liposome drug delivery systems. Journal of Pharmaceutical Sciences, 90(6), 667-680.
  • Malam, Y., & al. (2009). Liposomes & nanoparticles, nanosized vehicles for drug delivery in cancer. Trends in Pharmacological Sciences, 30(11), 592-599.
  • Martin, F. (2011). Comparison of Liposomal Doxorubicin Products: Myocet Vs. DOXIL. Apples to Apples? http://www.fda.gov/ohrms/dockets/ac/01/slides/ 3763s2-08-martin/sld001.htm.
  • Yang, F., & al. (2011). Liposome based delivery systems in pancreatic cancer treatment: From bench to bedside. Cancer Treatment Reviews, 37(8), 633-642.
  • Hervella, V., & al. (2008). Nanomedicine: New Challenges & Opportunities in Cancer Therapy. Journal of Biomedical Nanotechnology, 4(3), 276-292.
  • Gelderblom, H., & al. (2001). Cremophor EL: the drawbacks & advantages of vehicle selection for drug formulation. European Journal of Cancer, 37(13), 1590-1598.
  • Alexis, F., & al. (2010). Nanoparticle Technologies for Cancer Therapy Drug Delivery, M. Schäfer-Korting, Editor Springer Berlin Heidelberg. 55-86.
  • Desai, N., & al. (2009). SPARC Expression Correlates with Tumor Response to Albumin-Bound Paclitaxel in Head & Neck Cancer Patients. Translational Oncology, 2(2), 59-64.
  • Merle, (2011). Presentation of Livatag® (BioAlliance Pharma) survival results, in International liver cancer congress. Hong Kong.
  • Duncan, R. (2006). Polymer conjugates as anticancer nanomedicines. Nature Reviews Cancer, 6(9), 688-701.
  • Vicent, M.J., & al. (2006). Polymer conjugates: nanosized medicines for treating cancer. Trends in Biotechnology, 24(1), 39-47.
  • Graham, M.L. (2003). Pegaspargase: a review of clinical studies. Advanced Drug Delivery Reviews, 55(10), 1293-1302.
  • Canal, F., & al. Polymer-drug conjugates as nano-sized medicines. Current Opinion in Biotechnology, 22, 894-900.
  • Campone, M., & al. (2007).P hase I & pharmacokinetic trial of AP5346, a DACH-platinum-polymer conjugate, administered weekly for three out of every 4 weeks to advanced solid tumor patients. Cancer Chemotherapy & Pharmacology, 60(4), 523-533.
  • Nowotnik, D. & al. (2009). ProLindac™ (AP5346): A review of the development of an HPMA DACH platinum Polymer Therapeutic. Advanced Drug Delivery Reviews, 61(13), 1214-1219.
  • Li, C., & al. (2008). Polymer-drug conjugates: Recent development in clinical oncology. Advanced Drug Delivery Reviews, 60(8), 886-898.
  • Pasut, G., & al. (2009). PEG conjugates in clinical development or use as anticancer agents: An overview., Advanced Drug Delivery Reviews61(13), 1177-1188.
  • Schluep, T., & al. (2006). Preclinical Efficacy of the Camptothecin-Polymer Conjugate IT-101 in Multiple Cancer Models. Clinical Cancer Research, 12(5), 1606-1614.
  • Blanco, E., & al., (2011). Nanomedicine in cancer therapy: Innovative trends & prospects. Cancer Science, 102(7), 1247-1252.
  • Oerlemans, C., & al., (2010). Polymeric Micelles in Anticancer Therapy: Targeting, Imaging & Triggered Release. Pharmaceutical Research, 27(12), 2569-2589.
  • NK105 Paclitaxel Micelle. (2011). (cited 2011 17-10-2011); Available from: http://www.nanocarrier.co.jp/en/research/pipeline/01.html.
  • Kato, K., & al. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investigational New Drugs, 1-7.
  • Yasuhiro, M. (2011). Preclinical & clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect. Advanced Drug Delivery Reviews, 63(3), 184-192.
  • Kataoka, K., & al. (2006). Polymeric micelle containing cisplatin enclosed therein & use thereof, Toudai TLO, Ltd.: USA.
  • Uchino, H., & al. (2005). Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity & neurotoxicity of cisplatin in rats. British Journal of Cancer, 93(6), 678-687.
  • Lee, S.-W., & al. Development of docetaxel-loaded intravenous formulation, Nanoxel-PM™ using polymer-based delivery system. Journal of Controlled Release, 155, 262-271.
  • Paszko, E., & al. (2011). Nanodrug applications in photodynamic therapy. Photodiagnosis & Photodynamic Therapy, 8(1), 14-29.
  • Sharma, R., & al. (2009). Newer nanoparticles in hyperthermia treatment & thermometry. Journal of Nanoparticle Research, 11(3), 671-689.
  • Rozanova, N., & al. (2008). Metal & Magnetic Nanostructures for Cancer Detection, Imaging, & Therapy. Journal of Biomedical Nanotechnology, 4(4), 377-399.
  • Prijic, S., et al. (2011). Magnetic nanoparticles as targeted delivery systems in oncology. Radiology & Oncology, 45(1), 1-16.
  • Jordan, A., & al. (1999). Endocytosis of dextran & silan-coated magnetite nanoparticles & the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. Journal of Magnetism & Magnetic Materials, 194(1-3), 185-196.
  • Nune, S.K., & al. (2011). Advances in lymphatic imaging & drug delivery. Advanced Drug Delivery Reviews, 63(10-11), 876-885.
  • Hu, Y.-L., & al. (2010). J Mesenchymal stem cells: A promising targeted-delivery vehicle in cancer gene therapy. ournal of Controlled Release, 147(2), 154-162.
  • Rochlitz, C.F. (2001). Gene therapy of cancer. SWISS MED WKLY, 131, 4-9.
  • Jeong, J.H., & al. (2011) Self-Assembled & Nanostructured siRNA Delivery Systems. Pharmaceutical Research, 28(9), 2072-2085.
  • Bedikian, A.Y., & al. (2008). Allovectin-7 therapy in metastatic melanoma. Expert Opinion on Biological Therapy, 8(6), 839-844.
  • Bedikian, A.Y., & al. (2010). A phase 2 study of high-dose Allovectin-7 in patients with advanced metastatic melanoma. Melanoma Research, 20(3), 218-226.
  • Study With Atu027 in Patients With Advanced Solid Cancer. (2011) http://clinicaltrials.gov/ct2/show/NCT00938574?term=atu+027&rank=1.
  • Aleku, M., & al. (2008). Atu027, a Liposomal Small Interfering RNA Formulation Targeting Protein Kinase N3, Inhibits Cancer Progression. Cancer Research, 68(23), 9788-9798.
  • Davis, M.E. (2009). The First Targeted Delivery of siRNA in Humans via a Self-Assembling, Cyclodextrin Polymer-Based Nanoparticle: From Concept to Clinic. Molecular Pharmaceutics, 6(3), 659-668.
  • Morikawa, T., & al. (2010). Expression of ribonucleotide reductase M2 subunit in gastric cancer & effects of RRM2 inhibition in vitro. Human Pathology, 41(12), 1742-1748.
  • O'Hagan, D.T., & al. (2006). Novel approaches to pediatric vaccine delivery. Advanced Drug Delivery Reviews, 58(1), 29-51.
  • Vicente, S., & al. (2009). Nanovacunas, in Nanotecnología Farmacéutica: Realidades y posibilidades farmacoterapéuticas, J.L. Vila-Jato, Editor, Instituto de España, Real Academia Nacional de Farmacia: Madrid, España. 320.
  • Shurin, M.R., & al. (2011). Regulatory dendritic cells New targets for cancer immunotherapy. Cancer Biology & Therapy, 11(11), 988-992.
  • Sangha, R., & al. (2007). L-BLP25, A Peptide Vaccine Strategy in Non-Small Cell Lung Cancer. Clinical Cancer Research, 13(15), 4652s-4654s.
  • Pene, F., & al. (2009). Toward theragnostics. Critical Care Medicine, 37(1), S50-S58 10.1097/CCM.0b013e3181921349.
  • Kievit, F.M., & al. (2011). Cancer Nanotheranostics: Improving Imaging & Therapy by Targeted Delivery Across Biological Barriers. Advanced Materials, 23(36), H217-H247.
  • Lammers, T., & al. (2010). Nanotheranostics & Image-Guided Drug Delivery: Current Concepts & Future Directions. Molecular Pharmaceutics, 7(6), 1899-1912.