Contribución de los procesos y contenidos a la diferenciación cognitiva en la infanciaun estudio con escolares portugueses

  1. Brito, lurdes
  2. Almeida, Leandro S.
  3. Ferreira, Aristides I.
  4. Guisande Couñago, María Adelina
Revista:
Journal for the Study of Education and Development, Infancia y Aprendizaje

ISSN: 0210-3702 1578-4126

Ano de publicación: 2011

Volume: 34

Número: 3

Páxinas: 323-336

Tipo: Artigo

DOI: 10.1174/021037011797238540 DIALNET GOOGLE SCHOLAR

Outras publicacións en: Journal for the Study of Education and Development, Infancia y Aprendizaje

Resumo

Este artículo analiza la organización de las habilidades cognitivas en la infancia, considerando los procesos cognitivos y los contenidos de las tareas utilizadas en su evaluación. Una muestra de 539 escolares portugueses, entre los 4 y los 10 años, realizó la Escala de Competencias Cognitivas - ECCOs 4/10, para niños de los 4 a los 10 años de edad - ECCOs 4/10 (Brito, 2009; Brito y Almeida, 2009). Se trata de una batería formada por 11 pruebas, con contenido verbal y no-verbal, que evalúa diversas funciones cognitivas (percepción, memoria, comprensión, razonamiento, resolución de problemas y pensamiento divergente). Los análisis factoriales confirmatorios (AFC) llevados a cabo permiten aceptar un modelo proponiendo la existencia de un factor general y de un segundo modelo, con mejores índices de ajuste, formado por dos factores asociados al contenido verbal y noverbal de las pruebas. Además, los análisis indican inexistencia de invarianza factorial del modelo más ajustado (el modelo de dos factores verbal y no-verbal correlacionados) en los tres grupos de edad considerados (4/5, 6-8 y 9/10). Estos resultados sugieren que las diferencias significativas en la evolución normal de las aptitudes cognitivas, relacionadas con el aprendizaje escolar, provocan cambios a nivel de la estructura factorial de las aptitudes estudiadas con la ECCOs 4/10.

Referencias bibliográficas

  • ACKERMAN, P. L. (1996). A theory of intellectual development: Process, personality, interests, and knowledge. Intelligence, 22, 227-257.
  • ALMEIDA, L. S. (1994). Inteligência: Definição e medida. Aveiro: Centro de Investigação, Difusão e Intervenção Educacional.
  • ALMEIDA, L. S., PRIETO, M. D., FERREIRA, A. I., BERMEJO, M. R., FERRANDO, M. & FERRÁNDIZ, C. (2010). Intelligence assessment: Gardner multiple intelligence theory as an alternative. Learning and Individual Differences, 20, 225-230.
  • BEAUDUCEL, A., BROCKE, B. & LIEPMANN, D. (2001). Perspectives on fluid and crystallized intelligence: Facets for verbal, numerical, and figural intelligence. Personality and Individual Differences, 30, 977-994.
  • BENTLER, P. M. (1992). EQS structural equations program manual. Los Ángeles: BMDP Statistical Software.
  • BINET, A. & SIMON, T. (1905). Méthodes nouvelles pour le diagnostic du niveau intellectuel des anormaux. Année Psychologique, 11, 191-244.
  • BLAIR, C. (2006). How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability. Behavioral and Brain Sciences, 29, 109-160.
  • BOLLEN, K. A. (1989). Structural equations with latent variables. Nueva York: Wiley.
  • BRITO, M. L. (2009). Desenvolvimento e realização cognitiva na infância: Construção e validação da ECCOs 4/10. Tesis doctoral no publicada. Braga: Universidade do Minho.
  • BRITO, M. L. & ALMEIDA, L. S. (2009). Escala de Competências Cognitivas para Crianças - ECCOs 4/10: Manual. Porto: Edición de los autores.
  • CARROLL, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge, UK: Cambridge University Press.
  • CARROLL, J. B. (2003). The higher-stratum structure of cognitive abilities: Current evidence supports g and about 10 broad factors. En H. Nyborg (Ed.), The scientific study of general intelligence: Tribute to Arthur R. Jensen (pp. 5-21). Amsterdam: Pergamon.
  • CASTEJÓN, J. L., PÉREZ, A. M. & GILAR, R. (2010). Confirmatory factor analysis of Project Spectrum activities. A secondorder g factor or multiple intelligences? Intelligence, 38, 481-496.
  • CATTELL, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54, 1-22.
  • CATTELL, R. B. (1971). Abilities, their structure, growth, and action. Boston: Houghton Mifflin.
  • CHEUNG, G. W. & RENSVOLD, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233-255.
  • COLOM, R., RUBIO, V. J., SHIH, P. C. & SANTACREU, J. (2006). Fluid intelligence, working memory and executive functioning. Psicothema, 18, 816-821.
  • D'ESPOSITO, M., AGUIRRE, G. K., ZARAHN, E., BALLARD, D., SHIN, R. K. & LEASE, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7, 1-13.
  • FLOYD, R. G., EVANS, J. J. & MCGREW, K. S. (2003). Relations between measures of Cattell-Horn-Carroll (CHC) cognitive abilities and mathematics achievement across the school-age years. Psychology in the Schools, 40, 155-171.
  • GARDNER, H. (2006). On failing to grasp the core of MI theory: A response to Visser et al. Intelligence, 34, 503-505.
  • GUILFORD, J. P. (1967). The nature of human intelligence. Nueva York: McGraw-Hill.
  • GUSTAFSSON, J. E. (1999). Measuring and understanding g: Experimental and correlational approaches. En P. L. Ackerman, P. C. Kyllonen & R. D. Edwards (Eds.), Learning and individual differences: Process, trait, and content determinants (pp. 275-289). Washington, DC: American Psychological Association.
  • HORN, J. L. (1988). Thinking about human abilities. En J. R. Nesselroade & R. B. Cattell (Eds.), Handbook of multivariate experimental psychology (pp. 645-685). Nueva York: Plenum Press.
  • HORN, J. L. & NOLL, J. (1997). Human cognitive capabilities: Gf-Gc theory. En D. P. Flanagan, J. L. Genshaft & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (pp. 53-91). Nueva York: Guilford Press.
  • HU, L. T. & BENTLER, P. M. (1995). Evaluating model fit. En R. H. Hoyle (Ed.), Structural equation modeling. Concepts, issues, and applications (pp. 76-99). Thousand Oaks, CA: Sage.
  • INE (1997). Estatísticas demográficas. Lisboa: INE.
  • JOHNSON, W. & BOUCHARD JR., T. J. (2005). The structure of human intelligence: It is verbal, perceptual, and image rotation (VPR), not fluid and crystallized. Intelligence, 33, 393-416.
  • JOHNSON, W., NIJENHUIS, J. & BOUCHARD JR., T. J. (2008). Still just 1 g: Consistent results from five test batteries. Intelligence, 36, 81-95.
  • KANE, M. J. & GRAY, J. R. (2005). Fluid intelligence. En N. J. Salkind (Ed.), Encyclopedia of Human Development, 3, 528-529.
  • KISS, I., WATTER, S., HEISZ, J. J. & SHEDDEN, J. M. (2007). Control processes in verbal working memory: An event-related potential study. Brain Research, 1172, 67-81.
  • KLAUER, K. J., WILLMES, K. & PHYE, G. D. (2002). Inducing inductive reasoning: Does it transfer to fluid intelligence? Contemporary Educational Psychology, 27, 1-25.
  • KLINE, R. B. (1998). Principles and practice of structural equation modeling. Nueva York: The Guilford Press.
  • KVIST, A. V. & GUSTAFSSON, J. E. (2007). The relation between fluid intelligence and the general factor as a function of cultural background: A test of Cattell's investment theory. Intelligence, 36, 422-436.
  • MACCALLUM, R. C. & AUSTIN, J. T. (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51, 201-226.
  • MCARDLE, J. J., FERRER-CAJA, E., HAMAGAMI, F. & WOODCOCK, R. W. (2002). Comparative longitudinal structural analyses of the growth and decline of multiple intellectual abilities over the life span. Developmental Psychology, 38, 115-142.
  • MCARDLE, J. J., HAMAGAMI, F., MEREDITH, W. & BRADWAY, K. P. (2000). Modeling the dynamic hypotheses of Gf-Gc theory using longitudinal life-span data. Learning and Individual Differences, 12, 53-79.
  • MCGREW, K. S. (2005). The Cattell-Horn-Carroll theory of cognitive abilities: Past, present and future. En D. P. Flanagan, J. L. Genshaft & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests and issues (pp. 136-181) (2a ed.). Nueva York: Guilford Press.
  • MCGREW, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37, 1-10.
  • OLIVEIRA, E., ALMEIDA, L. S., FERRÁNDIZ, C., FERRANDO, M., SAINZ, M. & PRIETO, M. D. (2009). Tests de pensamiento creativo de Torrance (TTCT): Elementos para la validez de constructo en adolescentes Portugueses. Psicothema, 21, 562-567.
  • ORESICK, R. J. & BRODER, S. N. (1988). The psychological structure of the Wechsler Memory Scale in comparison to the WAIS-R in low-IQ clinical population. Journal of Clinical Psychology, 44, 549-557.
  • RIBEIRO, I. S., MAIA, J., PRIETO, G. & ALMEIDA, L. S. (2000). Validez estructural de las pruebas de evaluación de realización cognitiva. Psicothema, 12, 137-143.
  • ROID, G. H. & POMPLUM, M. (2005). Interpreting the Stanford-Binet intelligence scales, fifth edition. En D. P. Flanagan, J. L. Genshaft & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests and issues (pp. 325-343) (2a ed). Nueva York: Guilford.
  • SALOVEY, P. & MAYER, J. D. (1990). Emotional intelligence. Imagination, Cognition and Personality, 9, 185-211.
  • SIMÕES, M. M. R. (1994). Investigações no âmbito da aferição nacional do teste das Matrizes Progressivas Coloridas de Raven. Tesis doctoral. Coimbra: Universidade de Coimbra.
  • SMITH, E. E. & JONIDES, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657-1661.
  • SNOW, R., KYLLONEN, P. & MARSHALEK, B. (1984). The topography of ability and learning correlations. En R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 2, pp. 47-103). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • SPEARMAN, CH. (1927). The abilities of man: Their nature and measurement. Nueva York: MacMillan.
  • STERNBERG, R. J. (1993). Sternberg Triarchic Abilities Tests (Level H). New Haven, CO: Yale University.
  • STERNBERG, R. J., CASTEJÓN, J. L., PRIETO, M. D., HAUTAMÄKI, J. & GRIGORENKO, E. L. (2001). Confirmatory factor analysis of the Sternberg Triarchic Abilities Test in three international samples: An empirical test of the triarchic theory of intelligence. European Journal of Psychological Assessment, 17, 1-16.
  • STERNBERG, R. J., PRIETO, M. D. & CASTEJÓN, J. L. (2000). Análisis factorial confirmatorio del Sternberg Triarchic Abilities Tests (nivel-H) en una muestra española: Resultados preliminares. Psicothema, 12, 642-647.
  • TAUB, G. E. & MCGREW, K. S. (2004). A confirmatory factor analysis of Cattell-Horn-Carroll theory and crossage invariance of the Woodcock-Johnson Tests of Cognitive Abilities III. School Psychology Quarterly, 19, 72-87.
  • THURSTONE, L. L. (1938). Primary Mental Abilities. Chicago: University of Chicago Press.
  • VERNON, P. E. (1961). The structure of human abilities (2a ed.). Londres: Methuen.
  • WECHSLER, D. (1939). The measurement of adult intelligence. Baltimore: Williams & Wilkins.
  • WECHSLER, D. (2003). Technical and interpretative Manual for Wechsler Intelligence Scale for Children (4a ed.). San Antonio: The Psychological Corporation.
  • WEST, S. G., FINCH, J. F. & CURRAN, P. J. (1995). Structural equation models with nonnormal variables: Problems and remedies. En R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues and applications (pp. 56-75). Newbury Park, CA: Sage.
  • WOODCOCK, R. W. (2002). New looks in the assessment of cognitive ability. Peabody Journal of Education, 77, 6-22.