Modelling spatial patterns of distribution and abundance of mussel seed using STAR models

  1. Pata, María P.
  2. Rodríguez Álvarez, María Xosé
  3. Lustres Pérez, Vicente
  4. Fernández Pulpeiro, Eugenio
  5. Cadarso Suárez, Carmen María
Revista:
Sort: Statistics and Operations Research Transactions

ISSN: 1696-2281

Ano de publicación: 2010

Volume: 34

Número: 1

Páxinas: 67-78

Tipo: Artigo

Outras publicacións en: Sort: Statistics and Operations Research Transactions

Resumo

As mussel farming depends on sources of natural mussel seed, knowledge of factors is required to regulate both the spatial distribution and abundance of this resource. These spatial patterns were modelled using Bayesian STructured Additive Regression (STAR) models for categorical data, based on a mixed-model representation. We used Bayesian penalized splines for modelling the continuous covariate effects and a Markov random ?eld prior for estimating the spatial effects.

Referencias bibliográficas

  • Austin, M. P. (2002). Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157, 101-118.
  • Austin, M. P. (2007). Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling, Review, 200, 1-19.
  • Belitz, C., Brezger, A., Kneib, T. and Lang, S. (2009): BayesX Software for Bayesian inference in structured additive regression models. Version 2.0.
  • Besag, J., York, J. and Mollié, A. (1991). Bayesian image restoration with two applications in spatial statistics (with discussion). Annals of the Institute of Statistical Mathematics, 43, 1-59.
  • Boeck, P. and Wilson, M. eds. (2006). Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach. Springer, New York.
  • Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing using B-splines and penalties (with comments and rejoinder). Statistical Science, 11, 89-121.
  • Fahrmeir, L. and Lang, S. (2001). Bayesian inference for generalized additive models based on Markov random field priors. Applied Statistics, 50 (2), 201-220.
  • Fahrmeir, L., Kneib, T. and Lang, S. (2004). Penalized structured additive regression for space-time data: a Bayesian perspective. Statistica Sinica, 14, 731-761.
  • Guisan, A., Edwards, T. C. and Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157, 89-100.
  • Kammann, E. E. and Wand, M. P. (2003). Geoadditive models. Journal of the Royal Statistical Society C, 52, 1-18.
  • Kneib, T. (2006). Mixed model based inference in structured additive regression. PhD thesis, Dr.Hut-Verlag.
  • Kneib, T. and Fahrmeir, L. (2006). Structured additive regression for categorical space-time data: a mixed model approach. Biometrics, 62, 109-118.
  • Kneib, T., Müller, J. and Hothorn, T. (2008). Spatial smoothing techniques for the assessment of habitat suitability. Environmental and Ecological Statistics, 15, 343-364.
  • Lang, S. and Brezger, A. (2004). Bayesian P-splines. Journal of Computational and Graphical Statistics, 13, 183-212.
  • McCullagh, P., Nelder, J. A. (1997). Generalized Linear Models, second ed. Chapman and Hall, London.
  • Underwood, A. J., Chapman, M. G. and Connell, S. D. (2000). Observation s in ecology: you can’t make progress on processes without understanding the patterns. Journal of Experimental Marine Biology and Ecology, 250, 97-115.
  • Wood, S. N. (2006). Generalized additive models: an introduction with R. CRC Press, Boca Raton, FL.