Learning non-monotonic logic programs to reason about actions and change

  1. Lorenzo Blanco, David
Dirixida por:
  1. Ramón Pérez Otero Director

Universidade de defensa: Universidade da Coruña

Fecha de defensa: 30 de novembro de 2001

Tribunal:
  1. Stephen Muggleton Presidente/a
  2. Antonio Bahamonde Rionda Secretario/a
  3. Senén Barro Vogal
  4. Alessandro Proquetti Vogal
  5. Pavel Brazdil Vogal

Tipo: Tese

Teseo: 92239 DIALNET lock_openRUC editor

Resumo

El objetivo de esta tesis es el diseño de métodos de aprendizaje automático capaces de encontrar un modelo de un sistema dinámico que determina cómo las propiedades del sistema con afectadas por la ejecución de acciones, Esto permite obtener de manera automática el conocimiento específico del dominio necesario para las tareas de planficación o diagnóstico así como predecir el comportamiento futuro del sistema. La aproximación seguida difiere de las aproximaciones previas en dos aspectos. Primero, el uso de formalismos no monótonos para el razonamiento sobre acciones y el cambio con respecto a los clásicos operadores tipo STRIPS o aquellos basados en formalismos especializados en tareas muy concretas, y por otro lado el uso de métodos de aprendizaje de programas lógicos (Inductive Logic Programming). La combinación de estos dos campos permite obtener un marco declarativo para el aprendizaje, donde la especificación de las acciones y sus efectos es muy intuitiva y natural y que permite aprender teorías más expresivas que en anteriores aproximaciones.