Monitoring dexamethasone skin biodistribution with ex vivo MALDI-TOF mass spectrometry imaging and confocal Raman microscopy

  1. Pena-Rodríguez, Eloy 4
  2. García-Berrocoso, Teresa 56
  3. Vázquez Fernández, Ezequiel 1
  4. Otero-Espinar, Francisco J. 123
  5. Abian, Joaquin 56
  6. Fernández-Campos, Francisco 4
  1. 1 Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
  2. 2 Parqueasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
  3. 3 Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
  4. 4 Laboratory Reig Jofre, R&D Department, 08970, Sant Joan Despí, Barcelona, Spain
  5. 5 Biological and Environmental Proteomics, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
  6. 6 Laboratorio de Proteómica CSIC/Universitat Autònoma de Barcelona (UAB), IIBB-CSIC, Barcelona, Spain
Journal:
International Journal of Pharmaceutics

ISSN: 0378-5173

Year of publication: 2023

Volume: 636

Pages: 122808

Type: Article

DOI: 10.1016/J.IJPHARM.2023.122808 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: International Journal of Pharmaceutics

Abstract

Two of the most promising techniques in terms of ex vivo skin imaging and quantifying are confocal Raman microscopy and MALDI-TOF mass spectrometry imaging (MALDI-TOF MSI). Both techniques were set up, and the semiquantitative skin biodistribution of previously developed dexamethasone (DEX) loaded lipomers was compared using Benzalkonium chloride (BAK) as a tracer of the nanoparticles. In MALDI-TOF MSI, DEX was derivatised with GirT (DEX-GirT) and the semiquantitative biodistribution of both DEX-GirT and BAK was successfully obtained. The amount of DEX measured by confocal Raman microscopy was higher than that measured by MALDI-TOF MSI, but MALDI-TOF MSI proved to be a more suitable technique for tracing BAK. An absorption-promoting tendency of DEX loaded in lipomers versus a free-DEX solution was observed in confocal Raman microscopy. The higher spatial resolution of confocal Raman microscopy (350 nm) with respect to MALDI-TOF MSI (50 μm) allowed to observe specific skin structures like hair follicles. Nevertheless, the faster sampling rate of MALDI-TOF-MSI, permitted the analysis of larger tissue regions. In conclusion, both techniques allowed to simultaneously analyze semiquantitative data together with qualitative images of biodistribution, which is a very helpful tool when designing nanoparticles that accumulate in specific anatomical regions.

Bibliographic References

  • Austin, (2016), Analyst, 10.1039/C5AN01786F
  • Balzus, (2017), Eur. J. Pharm. Biopharm., 115, pp. 122, 10.1016/j.ejpb.2017.02.001
  • Barré, (2016), Anal Chem, 88, pp. 12051, 10.1021/acs.analchem.6b02491
  • Beber, (2016), J. Nanosci. Nanotechnol., 16, pp. 1331, 10.1166/jnn.2016.11670
  • Benito-González, (2020), J. Raman Spectrosc., 51, pp. 2022, 10.1002/jrs.5936
  • Bunch, (2004), Rapid Commun. Mass Spectrom., 18, pp. 3051, 10.1002/rcm.1725
  • Caspers, (1998), Biospectroscopy, 4, pp. 31, 10.1002/(SICI)1520-6343(1998)4:5+<S31::AID-BSPY4>3.0.CO;2-M
  • Caspers, (2001), J Invest Dermatol, 116, pp. 434, 10.1046/j.1523-1747.2001.01258.x
  • Caspers, (2003), Biophys J, 85, pp. 572, 10.1016/S0006-3495(03)74501-9
  • Döge, (2016), J. Control. Release, 242, pp. 25, 10.1016/j.jconrel.2016.07.009
  • Dueñas, M.E., Larson, E.A., Lee, Y.J., 2019. Corrigendum: Toward Mass Spectrometry Imaging in the Metabolomics Scale: Increasing Metabolic Coverage Through Multiple On-Tissue Chemical Modifications (Frontiers in Plant Science, (2019), 10, 10.3389/fpls.2019.00860). Front Plant Sci. 10.3389/fpls.2019.01079.
  • Fitzgerald, M.C., Parr, G.R., Smith’, L.M., 1993. Basic Matrices for the Matrix-Assisted Laser Desorption/ Ionization Mass Spectrometry of Proteins and Oligonucleotides, Anal. Chem.
  • Franzen, (2013), Eur. J. Pharm. Biopharm., 84, pp. 437, 10.1016/j.ejpb.2012.11.017
  • Gao, (2019), J. Agric. Food Chem., 67, pp. 8958, 10.1021/acs.jafc.9b02635
  • Goodwin, (2011), Anal. Chem., 83, pp. 9694, 10.1021/ac202630t
  • Grégoire, (2020), Adv. Drug Deliv. Rev., 10.1016/j.addr.2019.11.004
  • Guo, (2020), Anal. Chem., 92, pp. 1431, 10.1021/acs.analchem.9b04618
  • Guy, (2010), Handb Exp. Pharmacol., 10.1007/978-3-642-00477-3_13
  • Handler, (2021), Eur. J. Pharm. Biopharm., 159, pp. 1, 10.1016/j.ejpb.2020.12.008
  • Hernández, (2013), J. Raman Spectrosc., 44, pp. 827, 10.1002/jrs.4290
  • Hong, H., Wang, Y., 2007. Derivatization with Girard reagent T combined with LC-MS/MS for the sensitive detection of 5-formyl-2′-deoxyuridine in cellular DNA. Anal Chem 79, 322–326. 10.1021/ac061465w.
  • John Wiley & Sons, Inc. SpectraBase; SpectraBase Compound ID=4KwNtDajJqj SpectraBase Spectrum ID=GhWXEmhuBn8 https://spectrabase.com/spectrum/GhWXEmhuBn8 (accessed 19/1/2023). [WWW Document], n.d.
  • John Wiley & Sons, Inc. SpectraBase; https://spectrabase.com/ad?a=SPECTRUM_1sk1IH8Yu2l&r=https://spectrabase.com/spectrum/1sk1IH8Yu2l (accessed 19/1/2023). [WWW Document], n.d.
  • Kampf, (2018), pp. 259
  • Kwak, (2012), Biochim. Biophys. Acta Biomembr., 1818, pp. 1410, 10.1016/j.bbamem.2012.02.013
  • Lachenmeier, (2008), J. Occup. Med. Toxicol., 10.1186/1745-6673-3-26
  • Lau, (2017), pp. 35
  • Leyden, (1972), Arch. Dermatol. Arch. Dermatol., 106, pp. 924, 10.1001/archderm.1972.01620150098034
  • Mcdonnell, G., Russell, A.D., Operations, L., Louis, S., 1999. Antiseptics and Disinfectants: Activity, Action, and Resistance, CLINICAL MICROBIOLOGY REVIEWS.
  • Meng, (2020), Angewandte Chemie - International Edition, 59, pp. 17864, 10.1002/anie.202002151
  • Pena, (2020), Adv. Drug Deliv. Rev., 10.1016/j.addr.2020.03.003
  • Pena-Rodríguez, (2021), Pharmaceutics, 13, 10.3390/pharmaceutics13040533
  • Perry, (2020), J. Mass Spectrom., 55, 10.1002/jms.4491
  • Raj, (2012), J. Pharm. Bioallied Sci., 10.4103/0975-7406.99016
  • Ryabchykov, (2018), Front. Chem., 6, 10.3389/fchem.2018.00257
  • Rzagalinski, (2017), Biochim. Biophys. Acta Proteins Proteom., 10.1016/j.bbapap.2016.12.011
  • Saraiya, N. v., Goldstein, D.A., 2011. Dexamethasone for ocular inflammation. Expert Opin. Pharmacother. 12, 1127–1131. 10.1517/14656566.2011.571209.
  • Signor, (2007), J. Mass Spectrom., 42, pp. 900, 10.1002/jms.1225
  • Silbey, (1995)
  • Takeo, (2019), Anal. Chem., 91, pp. 8918, 10.1021/acs.analchem.9b00619
  • Wang, (2019), Anal. Chem., 91, pp. 4070, 10.1021/acs.analchem.8b05680
  • Wu, Q., Comi, T.J., Li, B., Rubakhin, S.S., Sweedler, J. v., 2016. On-Tissue Derivatization via Electrospray Deposition for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Endogenous Fatty Acids in Rat Brain Tissues. Anal. Chem. 88, 5988–5995. 10.1021/acs.analchem.6b01021.
  • Yamamoto, (2017), Eur. J. Pharm. Biopharm., 118, pp. 30, 10.1016/j.ejpb.2016.12.005
  • Zhang, H., Shi, X., Vu, N.Q., Li, G., Li, Z., Shi, Y., Li, M., Wang, B., Welham, N. v., Patankar, M.S., Weisman, P., Li, L., 2020. On-Tissue Derivatization with Girard’s Reagent P Enhances N-Glycan Signals for Formalin-Fixed Paraffin-Embedded Tissue Sections in MALDI Mass Spectrometry Imaging. Anal. Chem. 92, 13361–13368. 10.1021/acs.analchem.0c02704.