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Abstract. This paper deals with the monitoring of traffic flow and air
pollution on an urban road. Specifically, the location of monitoring sta-
tions is studied, looking for points where obtained measures can be repre-
sentative of the surrounding areas. In order to do it, a 1D mathematical
model for obtaining the traffic flow on an urban road network is com-
bined with a 2D model for air pollution. From the numerical estimations
of these parameters, the problem of designing the monitoring strategy
is formulated as a Mixed Integer Multiobjective Optimization Problem
(MIMOP), which is solved by an ad-hoc procedure. Finally, this tech-
nique is applied to a simplified but realistic situation in the Guadalajara
Metropolitan Area (Mexico).
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1 Introduction

Traffic management is a serious problem in almost all cities. Moreover, in major
cities, vehicular traffic is one of the main causes of air pollution, which, in turn,
is considered one of the most important environmental challenges nowadays.
So, the control of traffic flow and air pollution is a very important task for
all municipal governments. In this process, the correct design of a monitoring
system is crucial. A lot of scientific literature about the topic could be found in
last decades, and still today it remains as a very hot topic (see, for instance, [6]
or [10]).

Recently [2], the authors proposed a general methodology for designing a
monitoring strategy in quality control process, in case that reliable estimations
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of the variables under study are available. Traffic flow on road networks can be
obtained by numerical simulation [4,5], and air pollution due to vehicular traffic
can be also estimated by using mathematical modelling [1,3,9]. So, in this work
we combine all of these techniques to design a monitoring strategy for traffic
flow and air pollution on an urban road. First, we present a mathematical model
for obtaining traffic and pollution estimations on an urban domain. Next, we
formulate the problem of designing the monitoring strategy as a Mixed Integer
Multiobjective Optimization Problem (MIMOP), and we propose a numerical
algorithm to solve it. Finally, we apply our technique to a realistic case posed in
the Guadalajara Metropolitan Area (Mexico).

2 Materials and Methods

2.1 Mathematical Modelling of Traffic Flow and Air Pollution

We consider an urban domain Ω ⊂ R
2 including a road network composed of NR

unidirectional avenues (segments) meeting at a number NJ of junctions (intersec-
tions), such that the endpoints of each segment are either on the boundary of Ω
or corresponds to one of the junctions. We denote by Iin, Iout ⊂ {1 . . . , NR} the
sets of indices corresponding to incoming and outgoing avenues in the network,
respectively. Moreover, for each junction j = 1 . . . , NJ , we denote Iin

j , Iout
j ⊂

{1 . . . , NR} the sets of indices corresponding to avenues incoming and outgoing
in that junction, respectively. Representing each avenue i = 1 . . . , NR, for a real
interval [ai, bi], the traffic flow in the road network is governed by the following
system [9]: for i = 1, . . . , NR, y ∈ Iin, z ∈ Iout, j = 1, . . . , NJ , k ∈ Iin

j , and
l ∈ Iout

j :

∂ρi

∂t
+

∂fi(ρi)
∂s

= 0 in (ai, bi) × (0, T ), (1)

ρi(., 0) = ρ0i in [ai, bi], (2)

fk(ρk(bk, .)) =
∑

l∈Iout
j

min
{

αj
lkDk(ρk(bk, .)), βj

klSl(ρl(al, .))
}

in (0, T ), (3)

fl(ρl(al, .)) =
∑

k∈Iin
j

min
{

αj
lkDk(ρk(bk, .)), βj

klSl(ρl(al, .))
}

in (0, T ), (4)

fz(ρz(bz, .)) = min{fout
z ,Dz(ρz(bz, .))} in (0, T ), (5)

fy(ρy(ay, .)) = min{Din
y (qy, .), Sy(ρy(ay, .))} in (0, T ), (6)

dqy

dt
= f in

y − fy(ρy(ay, .)) in (0, T ),

qy(0) = q0y,

}
(7)

where:

– ρi : [ai, bi] × [0, T ] → [0, ρmax
i ] are unknowns representing the density of cars

on the avenues.
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– fi : [0, ρmax
i ] → R are known functions giving the traffic flow, in terms of

density (the so-called fundamental diagram).
– Di, Si : [0, ρmax

i ] −→ R denote, respectively, the demand and supply func-
tions. If Ci (road capacity) denotes the maximum value of fi, and ρCi

(critical
density) is the point where this maximum is reached, then these functions are
given by:

Di(ρ) =
{

fi(ρ) if 0 ≤ ρ ≤ ρCi
,

Ci if ρCi
≤ ρ ≤ ρmax

i ,
Si(ρ) =

{
Ci if 0 ≤ ρi ≤ ρCi

,
fi(ρ) if ρCi

≤ ρ ≤ ρmax
i .

– αj
lk, βj

kl ∈ [0, 1], are known parameters giving preferences and limitations for
drivers arriving to a junction. In order to guarantee the conservation of cars
at junctions, they have to verify that

∑

k∈Iin
j

βj
kl = 1,

∑

l∈Iout
j

αj
lk = 1.

– qy : [0, T ] → [0,+∞) are unknowns representing queues length (measured in
number of cars) downstream the avenues y ∈ Iin.

– ρ0i , q0y, f in
y , fout

z are known functions giving initial and boundary conditions.
– Din

y (qy, t) represents the demand of queue qy at time t, and it is given by:

Din
y (qy, t) =

{
min{f in

y (t), Cin
y } if qy = 0,

Cin
y if qy > 0.

where Cin
y is the downstream road capacity, which is assumed to be known.

High levels for many air pollution indicators (for example, carbon monoxide CO)
are mainly due to vehicle emissions. These emissions depend on the traffic flow
and the density of cars on the network, and the CO concentration φ(x, t) can be
estimated by solving the following initial/boundary value problem [3]:

∂φ

∂t
+ v · ∇φ − ∇ · (μ∇φ) + κφ =

NR∑

i=1

ξi in Ω × (0, T ), (8)

φ(., 0) = φ0 in Ω, (9)

μ
∂φ

∂n
− φv · n = 0 on S−, (10)

μ
∂φ

∂n
= 0 on S+, (11)

where v(x, t) represents the wind velocity field, μ(x, t) is the CO molecular
diffusion coefficient, κ(x, t) is the CO extinction rate corresponding to the (first
order) reaction term, φ0 is a known function giving the initial CO concentration,
n denotes the unit outward normal vector to the boundary ∂Ω = S−∪S+, where
S− = {(x, t) ∈ ∂Ω × (0, T ) such that v · n < 0} represents the inflow boundary,
and S+ = {(x, t) ∈ ∂Ω × (0, T ) such that v · n ≥ 0} represents the outflow
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boundary. Finally, for each i = 1, . . . , NR, the term ξi stands for the source of
pollution due to vehicular traffic on the corresponding avenue. So, ξi is a Radon
measure (that is, an element of the dual of the space of continuous functions),
and, if σi : [ai, bi] −→ Ω is a parametrization of the avenue, it is given by:

〈ξi(t), v〉 =
∫ bi

ai

(γifi(ρi(s, t)) + ηiρi(s, t)) v(σi(s)) ‖σ′
i(s)‖ ds, ∀v ∈ C(Ω).

where ρi is the solution of model (1)–(7), and γi and ηi are weight parameters
representing contamination rates.

2.2 Optimal Monitoring Strategy: A Mixed Integer Multiobjective
Optimization Problem

Solving the coupled model (1)–(11) with different data (for example different
boundary conditions for traffic model, or different wind velocity fields for pollu-
tion model), we obtain estimations of traffic density and CO concentrations in
different situations (different scenarios). So, first of all, we define the NS sce-
narios to be considered (for example, a weekday and a holiday combined with
two typical wind velocity fields lead to NS = 2 different scenarios for traffic and
NS = 4 for pollution). Next, we fix the road R to be monitored and denote by
I = [a, b] the real interval representing it (for simplicity, hereinafter the subscript
i corresponding to the avenue is deleted). For each scenario m = 1, . . . , NS , we
solve the full system (1)–(11) for the corresponding data, and obtain estimations
of the following indicators on [a, b] × [0, T ]: traffic density ρm(s, t), traffic flow
qm(s, t) = f(ρm(s, t)), and CO concentration φm(s, t) ≡ φm(σ(s), t).

Our objective is related to designing a monitoring strategy for quality control
of one of these indicators. We are interested in a strategy that allow us, from
the measures of the chosen indicator at several specific points, to extrapolate its
behaviour on the whole road. Following the methodology developed in [2], we
propose to divide the interval [a, b] in a number N ∈ N of subintervals [cn−1, cn],
and measure the indicator at one point pn ∈ [cn−1, cn], with the final aim that
the measure at that point gives a global idea of the values of the indicator in the
entire subinterval. So, if we define c0 = a, cN = b, and take c = (c1, . . . , cN−1)
and p = (p1, . . . , pN ), the optimal monitoring strategy is given by the solution
of the following Mixed-Integer Multiobjective Optimization Problem (see [2]):

minimize J(N, c,p) = (f(N), Jσ(c), Jd(c,p)) ,
subject to cn−1 ≤ pn ≤ cn, n = 1 . . . , N,

(12)

where:

– f(N) = wN gives the economic costs of the monitoring system (w is the price
of each monitoring station).

– Jσ(c) indicates how good (representative) are the mean values of the indicator
in the different subintervals.
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– Jd(c,p) indicates how good are points pn to capture the mean values in
subintervals [cn−1, cn].

For example, if the indicator to be monitored is the traffic density, Jσ(c) and
Jd(c,p) are defined in the following way (if the indicator is traffic flow or CO
concentration, ρ should be replaced by q or φ below):

1. For n = 1 . . . , N we define:
- The mean value at subinterval [cn−1, cn] for the scenario m:

ρ̄m
n (t) =

∫ cn

cn−1

ρm(s, t) ds

cn − cn−1
.

- The deviation from the mean value (averaged for different scenarios):

σn =
1

NS

NS∑

m=1

1
T

∫ T

0

√∫ ci

cn−1

(ρm(s, t) − ρ̄m
n (t))2 ds dt. (13)

- The difference of the indicator at point pn from the mean value in the
corresponding subinterval (averaged for different scenarios):

dn =
1

NS

NS∑

m=1

1
T

∫ T

0

(ρm(pn, t) − ρ̄m
n (t))2 dt. (14)

2. We look for intervals [cn−1, cn] with similar values of σn, and all of them with
a value of σn as small as possible. So, we define Jσ(c) as a linear combination
of the maximum norm ‖.‖∞ (related to the first purpose) and the Euclidean
norm ‖.‖2 (related to the second one) of the vector σ(c) = (σ1, . . . , σN )
defined by (13):

Jσ(c) = r‖σ(c)‖∞ + (1 − r)‖σ(c)‖2, (15)

where r ∈ [0, 1] is a weight parameter.
3. We also want that at each subinterval the mean value is well captured. As

before, it leads us to define:

Jd(c,p) = r‖d(c,p)‖∞ + (1 − r)‖d(c,p)‖2, (16)

where d(c,p) = (d1, . . . , dN ) is given by (14).

2.3 Numerical Solution

With respect to numerical solution of system (1)–(11), we proceed in two steps:
First, the traffic model (1)–(7) is solved by combining a classical first order
numerical method for (1)–(6), with the forward Euler scheme for (7), (see [9] for
further details). Next, once functions ρi(s, t) are known and the source terms
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ξi can be computed, the pollution model (8)–(11) is solved by combining the
method of characteristics for the time discretization, with a Lagrange P1 finite
element method for the space discretization (see [1]).

Obtaining a monitoring strategy consists of determining the number N of
monitoring stations, the points p where these stations should be located, and
the subintervals c where measures can be extrapolated. These optimal param-
eters are given by a solution of the multiobjective optimization problem (12).
To obtain an efficient and satisfactory solution of problem (12), we assume that
it is desired a monitoring system with the smallest possible number of stations,
but ensuring that, in all subintervals, the measured values are sufficiently repre-
sentative. Thus, we use the following algorithm:

Algorithm 1

- Step 1. For each N = 1, 2, . . ., solve the problem
{

min Jσ(c)
subject to cn − cn−1 ≥ δ > 0, n = 1, . . . , N,

(17)

and show the decision maker the minimum values of Jσ obtained in each case.
- Step 2. Ask the decision maker, by virtue of the information obtained in pre-
vious step, to choose the maximum number Nmax of stations, and to set a
maximum threshold for the value of Jσ (denoted by Jmax).

- Step 3. For each N = 1, 2, . . . , Nmax, solve the problems
⎧
⎪⎪⎨

⎪⎪⎩

min Jd(c,p)
subject to cn−1 ≤ pn ≤ ci, n = 1, . . . , N,

cn − cn−1 ≥ δ, n = 1, . . . , N,
Jσ(c) ≤ Jmax,

(18)

and show the best solution to the decision maker.
- Step 4. Ask the decision maker if the solution obtained is satisfactory. If it
is, STOP. If not, return to Step 2 and increase the number of measurements
to take (Nmax) and/or increase the maximum threshold for Jσ (Jmax).

To solve problem (17) we propose the classical method of Nelder-Mead [7],
using a penalty function to deal with linear constraints. To solve problem (18) we
propose an ad-hoc method, based in splitting the problem in two lower-dimension
problems (see [2] for full details).

3 Results and Discussion

3.1 Case Study

We center our attention in the Guadajara Metropolitan Area (GMA), located
in the state of Jalisco (Mexico). This is the second largest metropolitan area in
Mexico, it has a population of around four and a half million inhabitants and
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Fig. 1. Satellite photo of Guadalajara Metropolitan Area, where can be seen the
domain Ω and the road network considered for numerical simulation. The road R
to be monitored is highlighted in blue.

more than two million vehicles (a significant portion of them with more than
ten years of usage and lack of maintenance), and it suffers recurrent episodes
of pollution, with high CO levels [8]. In order to exemplify above methodology,
we take the domain Ω depicted in Fig. 1, where we consider a road network
consisting of NR = 17 avenues, with NJ = 9 junctions. In this network, we
center our attention on the main road R highlighted in blue in Fig. 1, formed
by 6 avenues, L = 22.07 km long, and represented by the real interval I = [0, L]
given by:

I = [0, 5.89]∪ [5.89, 9.39]∪ [9.39, 13.33]∪ [13.33, 14.53]∪ [14.53, 17.58]∪ [17.58, L].

We consider two different scenarios for the traffic model, defined by boundary
conditions corresponding to a typical weekday and a typical holiday. Moreover,
for the pollution model, they are combined with other two scenarios defined
by two different (weak and hard) wind velocity fields, which are usual in this
region. In this situation, we apply previous technique to design two monitoring
strategies (the former for traffic flow and the latter for CO concentration) on
the road R.

3.2 Numerical Results

First of all, we solve the traffic model (1)–(7) for the two different scenarios
(weekday and holiday) and the pollution model (8)–(11) for the four data set
(weekday & weak wind, weekday & hard wind, holiday & weak wind, and holiday
& hard wind). For instance, Fig. 2(a) shows, for a weekday (T = 24 hours), the
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(a) (b)

Fig. 2. (a) Estimated values of traffic flow on the road R, for a weekday. (b) Estimated
values of CO concentration on the road R, for a weekday with a weak wind velocity
field.

Table 1. Solutions of problem (17) for traffic flow and CO monitoring.

N Jσ (minimal
value) for traffic
flow monitoring

Jσ (minimal
value) for CO
monitoring

2 715.2310 9.0262

3 441.1187 6.0762

4 340.0294 5.4051

5 193.6916 4.7951

6 103.8867 4.1210

7 94.6130 3.9467

estimated traffic flow on the road R. The CO concentrations for a weekday &
weak wind scenario is shown in Fig. 2(b).

Next, following Algorithm 1, we solve the problem (17) for N = 1, 2, . . .,
in order to obtain the minimal values of Jσ if N monitoring stations are used
(these values can be seen in Table 1). Assuming, for example, that 6 stations are
used, and taking Jmax = 180 as maximal threshold for Jσ if we are monitoring
traffic flow, and Jmax = 4.5 if it is CO concentration, the optimal locations of
monitoring stations can be seen in Table 2. In this table the reader can also find
the intervals in which data obtained by each station can be extrapolated. In this
case, the number of stations are equal to the number of avenues which form the
road R. For traffic flow monitoring, as could be expected, the subintervals given
by this methodology practically coincide with the avenues. On the contrary, if
we are monitoring the CO concentration, the subintervals are very different from
the avenues. This fact could be also expected, since we have to take into account
that CO concentration on a road is not only due to traffic in this road, but also
due to traffic in the roads nearby.
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Table 2. Optimal locations pn of monitoring stations, and subintervals [cn − 1, cn] in
which obtained data can be extrapolated. For the sake of comparison, real intervals
[ai, bi] representing the avenues that form the road R are also shown.

Traffic flow monitoring CO monitoring

pn [cn−1, cn] [ai, bi] pn [cn−1, cn]

2.706 [0, 5.797] [0,5.89] 1.389 [0, 4.702]

7.640 [5.797, 9.309] [5.89,9.39] 5.386 [4.702, 7.385]

11.118 [9.309, 13.466] [9.39,13.33] 8.858 [7.385, 9.675]

14.046 [13.466, 14.466] [13.33,14.53] 11.586 [9.675, 13.284]

16.055 [14.466, 17.517] [14.53,17.58] 13.989 [13.284, 16.327]

19.733 [17.517, L] [17.58,L] 21.345 [16.327, L]

Fig. 3. Comparison, in all possible scenarios, between mean values of (a) traffic flow
and (b) CO concentration, and the estimated values of these indicators at optimal
locations. In both cases, depicted results correspond to the subinterval n = 5 (as given
in Table 2).

Finally, to show the goodness of the location of monitoring stations, we com-
pare traffic flow and CO concentration mean values (q̄m

n (.) and φ̄m
n (.)), with

the estimated values of these indicators at optimal locations (qm(pn, .) and
φm(pn, .)). For instance, Fig. 3 shows the results in the n = 5 subinterval. As
can be noticed, the mean values are very well captured at optimal locations.

4 Conclusions

In this paper, a general methodology previously developed by the authors in
[2] has been applied to design a monitoring strategy of traffic flow and air
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pollution on an urban road. The results obtained in the Guadalajara Metropoli-
tan Area for a simplified case show that this methodology can be a useful tool for
designing monitoring techniques, not only in traffic pollution problems, but also
in other quality control problems (in particular, in any problem where estimates
of variables to be monitored can be available).
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