Multi-criteria analysis to compare multiple risks associated with management alternatives in planted forests

  1. Margot Régolini 1
  2. Ander Arias-González 2
  3. Manuela Branco 3
  4. Céline Meredieu 4
  5. Hervé Jactel 1
  6. Alejandro Cantero 5
  7. Amélie Castro 6
  8. Jean-Yves Fraysse 7
  9. Barry Gardiner 8
  10. Andrea Hevia 9
  11. Francisco-José Lario 10
  12. Catherine Steffy-Pater 8
  13. Roque Rodríguez-Soalleiro 11
  14. Paula Soares 3
  15. Christophe Orazio 8
  1. 1 Univ. Bordeaux
  2. 2 NEIKER-Tecnalia
  3. 3 Universidade de Lisboa
    info

    Universidade de Lisboa

    Lisboa, Portugal

    ROR https://ror.org/01c27hj86

  4. 4 INRAE, UEFP
  5. 5 HAZI Foundation
  6. 6 CRPF Nouvelle-Aquitaine
  7. 7 Institut Technologique Forêt Cellulose Bois-construction Ameublement
    info

    Institut Technologique Forêt Cellulose Bois-construction Ameublement

    París, Francia

    ROR https://ror.org/02q8h2f47

  8. 8 European Forest Institute
    info

    European Forest Institute

    Joensuu, Finlandia

    ROR https://ror.org/04zerf618

  9. 9 Universidad de Huelva
    info

    Universidad de Huelva

    Huelva, España

    ROR https://ror.org/03a1kt624

  10. 10 TRAGSA
  11. 11 Univ. Santiago de Compostela
Revista:
Forest systems

ISSN: 2171-5068

Ano de publicación: 2020

Volume: 29

Número: 2

Páxinas: 1-17

Tipo: Artigo

DOI: 10.5424/FS/2020292-15660 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Outras publicacións en: Forest systems

Resumo

Aim of study: Adaptation of silviculture in planted forest may help to mitigate damage due to biotic and abiotic hazards. However, compromises have to be found because it is not possible to minimize the risk from all hazards through application of a single forest management approach. The objective of this study was to improve a multi-criteria risk analysis (MCRA) method that makes it possible to rank forest management alternatives (FMAs) according to multiple risks. Material and Methods: We defined eight FMAs for maritime pine forests in France, Spain and Portugal. We used as the definition of risk the combination of hazard, susceptibility and exposure. Hazard level was estimated using archive data on occurrence and severity of damaging agents over the last few decades. Forest susceptibility to hazards was evaluated by experts who scored the effect on stand resistance of eleven silvicultural operations characterizing each FMA. Exposure was estimated as value at stake, which combined forest standing volume, simulated with forest growth models, and wood prices. Main Results: Using the PROMETHEE algorithm, we found that the overall ranking of FMAs was consistent across all countries, with short rotation plantations to produce pulpwood or energy wood were the least at risk. The ranking was mainly driven by forest values at stake. We found that by improving the accuracy of forest values exposed to damage, based on growth models and representative wood prices, the MCRA outcomes were more useful and realistic. Research highlights: Our methodology provides a relevant framework to design FMAs that would minimize risks while maintaining income.

Información de financiamento

UHU-1266324, FEDER Funds, Andalusia Regional Government, Con-sejería de Economía, Conocimiento, Empresas y Universidad 2014-2020

Referencias bibliográficas

  • Abad Viñas R, Caudullo G, Oliveira S, de Rigo D, 2016. Pinus pinaster in Europe: distribution, habitat, usage and threats. In J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T. Houston Durrant, & A. Mauri (Eds.), European Atlas of Forest Tree Species. Luxembourg: Publ. Off. EU,. pp. 128-129.
  • ADCIF, 2012. Los Incendios Forestales en España. Decenio 2001-2010 (Á. d. D. c. l. Forestales Ed.). Madrid (Spain): Ministerio de Agricultura, Alimentación y Medio Ambiente. pp. 138.
  • AFN, 2010. Inventário Florestal Nacional Portugal Continental IFN5, 2005 - 2006. Retrieved from http://www.icnf.pt/portal/florestas/ifn
  • Albert M, Hansen J, Nagel J, Schmidt M, Spellmann H, 2015. Assessing risks and uncertainties in forest dynamics under different management scenarios and climate change. Forest Ecosyst, 2(1): 14. https://doi.org/10.1186/s40663-015-0036-5
  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, et al., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manage, 259. https://doi.org/10.1016/j.foreco.2009.09.001
  • Ananda J, Herath G, 2009. A critical review of multi-criteria decision making methods with special reference to forest management and planning. Ecol Econ, 68(10): 2535-2548. https://doi.org/10.1016/j.ecolecon.2009.05.010
  • Aumonier T, Maugard F, 2006. Bilan de la forêt en 2004 : Les scolytes dans le massif landais suite aux tempêtes de 1999. Bilan après cinq ans de lutte. France: DSF. pp. 8.
  • Ballon P, Hamard J-P, 2003. Appréciation des dégâts de cervidés en milieu forestier (3ème tranche). Observatoire national des dégâts de cervidés en forêt. Résultats pour le département des Landes (France) (Rapport final).
  • Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ, 2013. The consequence of tree pests and diseases for ecosystem services. Science, 342(6160): 823. https://doi.org/10.1126/science.1235773
  • Branco S, Videira N, Branco M, Paiva MR, 2015. A review of invasive alien species impacts on eucalypt stands and citrus orchards ecosystem services: towards an integrated management approach. J Environ Manage, 149: 17-26. https://doi.org/10.1016/j.jenvman.2014.09.026
  • Brans J-P, 1982. L'ingénierie de la décision : l'élaboration d'instruments d'aide a la décision: Université Laval, Faculté des sciences de l'administration.
  • Brans J-P, Mareschal B, Vincke P, 1984. PROMETHEE: a new family of outranking methods in multicriteria analysis. Oper Res, 84: 477-490.
  • Brans J-P, Vincke P, 1985. Note-A Preference Ranking Organisation Method (The PROMETHEE Method for Multiple Criteria Decision-Making). Management Science 31(6): 647-656. https://doi.org/10.1287/mnsc.31.6.647
  • Brans J-P, Vincke P, Mareschal B, 1986. How to select and how to rank projects: The Promethee method. Eur J Oper Res, 24: 228-238. https://doi.org/10.1016/0377-2217(86)90044-5
  • Brans J-P, Mareschal B, 1994. The PROMCALC & GAIA decision support system for multicriteria decision aid. Decision support systems, 12(4-5): 297-310. https://doi.org/10.1016/0167-9236(94)90048-5
  • Bréda N, Badeau V, 2008. Forest tree responses to extreme drought and some biotic events: Towards a selection according to hazard tolerance? Comptes Rendus Geoscience, 340(9-10): 651-662. https://doi.org/10.1016/j.crte.2008.08.003
  • Brockerhoff EG, Jactel H, Parrotta JA, Ferraz SFB, 2013. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. Forest Ecol Manage, 301: 43-50. https://doi.org/10.1016/j.foreco.2012.09.018
  • Colin A, Meredieu C, Labbé T, Bélouard T, 2010. Étude rétrospective et mise à jour de la ressource pin maritime du massif des Landes de Gascogne après la tempête Klaus. Convention MAAP / IFN n° E18 /2010. Bordeaux, France.
  • de-Miguel S, Bonet JA, Pukkala T, Martínez de Aragón J, 2014. Impact of forest management intensity on landscape-level mushroom productivity: A regional model-based scenario analysis. Forest Ecol Manage, 330: 218-227. https://doi.org/10.1016/j.foreco.2014.07.014
  • De Barros AE, Macdonald EA, Matsumoto MH, Paula RC, Nijhawan S, Malhi Y, Macdonald DW, 2014. Identification of areas in Brazil that optimize conservation of forest carbon, jaguars, and biodiversity. Conserv Biol, 28(2): 580-593. https://doi.org/10.1111/cobi.12202
  • Deal RL, Cochran B, LaRocco G, 2012. Bundling of ecosystem services to increase forestland value and enhance sustainable forest management. Forest Policy Econ, 17: 69-76. https://doi.org/10.1016/j.forpol.2011.12.007
  • Dhôte J-F, 2005. Implication of Forest Diversity in Resistance to Strong Winds. In M. M. Caldwell, G. Heldmaier, R. B. Jackson, O. L. Lange, H. A. Mooney, E.-D. Schulze, U. Sommer, M. Scherer-Lorenzen, C. Körner, & E.-D. Schulze (Eds.), Forest Diversity and Function (Vol. 176): Springer Berlin Heidelberg. pp. 291-307. https://doi.org/10.1007/3-540-26599-6_14
  • Dias AC, Arroja L, 2012. Environmental impacts of eucalypt and maritime pine wood production in Portugal. J Clean Prod, 37: 368-376. https://doi.org/10.1016/j.jclepro.2012.07.056
  • Diaz-Balteiro L, Alfranca O, Bertomeu M, Ezquerro M, Giménez JC, González-Pachón J, Romero C, 2016. Using quantitative techniques to evaluate and explain the sustainability of forest plantations. Can J For Res, 46(9): 1157-1166. https://doi.org/10.1139/cjfr-2015-0508
  • DOG Diario Oficial de Galicia, 2014. ORDEN de 19 de mayo de 2014 por la que se establecen los modelos silvícolas o de gestión forestal orientativos y referentes de buenas prácticas forestales para los distritos forestales de Galicia (Spain). Diario Oficial de Galicia. Galicia, 106, 25488.
  • Doyi I, Essumang D, Gbeddy G, Dampare S, Kumassah E, Saka D, 2018. Spatial distribution, accumulation and human health risk assessment of heavy metals in soil and groundwater of the Tano Basin, Ghana. Ecotoxicology and Environmental Safety, 165: 540-546. https://doi.org/10.1016/j.ecoenv.2018.09.015
  • DRAAF Aquitaine, 2015. Mémento de la statistique agricole. La filière forêt-bois. Bordeaux (France).
  • DSF, 2010. La Lettre du DSF n°41 - Décembre 2010, 12 pp.
  • Fernandes PM, Rigolot E, 2007. The fire ecology and management of maritime pine (Pinus pinaster Ait.). Forest Ecol Manage, 241(1-3): 1-13. https://doi.org/10.1016/j.foreco.2007.01.010
  • Fettig CJ, Klepzig KD, Billings RF, Munson AS, Nebeker TE, Negrón JF, Nowak JT, 2007. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. Forest Ecol Manage, 238: 24-53. https://doi.org/10.1016/j.foreco.2006.10.011
  • Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. Nature communications, 4: 1340. https://doi.org/10.1038/ncomms2328
  • Garbelotto M, Gonthier P, 2013. Biology, Epidemiology, and Control of Heterobasidion Species Worldwide. Ann Rev Phytopathol, 51(1): 39-59. https://doi.org/10.1146/annurev-phyto-082712-102225
  • Gardiner BA, Quine CP, 2000. Management of forests to reduce the risk of abiotic damage - a review with particular reference to the effects of strong winds. Forest Ecol Manage, 135(1-3): 261-277. https://doi.org/10.1016/S0378-1127(00)00285-1
  • Gardiner BA, Birot Y, 2013. Challenges for forestry in relation to storms. In B. Gardiner, A. Schuck, M. J. Schelhaas, C. Orazio, K. Blennow, & B. Nicoll (Eds.), Living with storm damage to forests. Finland: European Forest Institute. pp. 123-129.
  • Gatto P, Zocca A, Battisti A, Barrento MJ, Branco M, Paiva MR, 2009. Economic assessment of managing processionary moth in pine forests: a case-study in Portugal. J Environ Manage, 90(2): 683-691. https://doi.org/10.1016/j.jenvman.2008.01.007
  • Ghaffariyan MR, Acuna M, Brown M, 2013. Analysing the effect of five operational factors on forest residue supply chain costs: A case study in Western Australia. Biomass Bioenerg, 59: 486-493. https://doi.org/10.1016/j.biombioe.2013.08.029
  • Glantz MH, 1994. Creeping Environmental Problems. The World & I, June: 218-225.
  • González González JM, Castedo-Dorado F, Diéguez-Aranda U, Rojo Alboreca A, Álvarez González JG. (2012). GesMO Simulador de crecimiento y producción de rodales forestales. Santiago de Compostela: Escola Politécnica Superior de Lugo Universidade de Santiago de Compostela (Galicia, Spain).
  • Hanewinkel M, Hummel S, Albrecht A, 2011. Assessing natural hazards in forestry for risk management: a review. Eur J For Res, 130: 329-351. https://doi.org/10.1007/s10342-010-0392-1
  • Hanewinkel M, Peyron JL, 2013. The economic impact of storms. In B. Gardiner, A. Schuck, M. J. Schelhaas, C. Orazio, K. Blennow, & B. Nicoll (Eds.), Living with storm damage to forests. Finland: European Forest Institute. pp. 55-63.
  • Huth A, Drechsler M, Kohler P, 2005. Using multicriteria decision analysis and a forest growth model to assess impacts of tree harvesting in Dipterocarp lowland rain forests. Forest Ecol Manage, 207(1-2): 215-232. https://doi.org/10.1016/j.foreco.2004.10.028
  • ICNF, 2013. Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. [pdf]. Lisboa: Instituto da Conservação da Natureza e das Florestas. pp. 34.
  • ICPF, 2013. Planted forests are a vital resource for future green economies.
  • IFN, 2010. La forêt française. Les résultats issus des campagnes d'inventaire 2005 à 2009. Les résultats pour la région Aquitaine (France). pp. 32.
  • IGN, 2012. Données brutes - Campagnes annuelles 2006 à 2012, http://inventaire-forestier.ign.fr/spip/spip.php?rubrique153
  • Ishizaka A, Nemery P, 2013. Multi-criteria decision analysis: methods and software. Chichester, West Sussex, United Kingdom: Wiley. pp. 296. https://doi.org/10.1002/9781118644898
  • Jactel H, Nicoll BC, Branco M, Gonzalez-Olabarria JR, Grodzki W, Langstrom B, Moreira F, Netherer S, Orazio C, Piou D, et al., 2009. The influences of forest stand management on biotic and abiotic risks of damage. Ann Forest Sci, 66(7): 18. https://doi.org/10.1051/forest/2009054
  • Jactel H, Branco M, Duncker P, Gardiner B, Grodzki W, Langstrom B, Moreira F, Netherer S, Nicoll B, Orazio C, et al., 2012a. A Multicriteria Risk Analysis to Evaluate Impacts of Forest Management Alternatives on Forest Health in Europe. Ecol Soc, 17. https://doi.org/10.5751/ES-04897-170452
  • Jactel H, Petit J, Desprez-Loustau M-L, Delzon S, Piou D, Battisti A, Koricheva J, 2012b. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob Change Biol, 18: 267-276. https://doi.org/10.1111/j.1365-2486.2011.02512.x
  • Jactel H, Bauhus J, Boberg J, Bonal D, Castagneyrol B, Gardiner B, Gonzalez-Olabarria JR, Koricheva J, Meurisse N, Brockerhoff EG, 2017. Tree Diversity Drives Forest Stand Resistance to Natural Disturbances. Current Forestry Reports, 3(3): 223-243. https://doi.org/10.1007/s40725-017-0064-1
  • Jactel H, Gritti ES, Drossler L, Forrester DI, Mason WL, Morin X, Pretzsch H, Castagneyrol B, 2018. Positive biodiversity-productivity relationships in forests: climate matters. Biology Letters, 14(4). https://doi.org/10.1098/rsbl.2017.0747
  • Kenis M, Auger-Rozenberg M-A, Roques A, Timms L, Péré C, Cock MJ, Settele J, Augustin S, Lopez-Vaamonde C, 2008. Ecological effects of invasive alien insects. In Ecological impacts of non-native invertebrates and fungi on terrestrial ecosystems: Springer. pp. 21-45. https://doi.org/10.1007/978-1-4020-9680-8_3
  • Klapwijk MJ, Bylund H, Schroeder M, Björkman C, 2016. Forest management and natural biocontrol of insect pests. Forestry, 89: 253-262. https://doi.org/10.1093/forestry/cpw019
  • Kron W, 2005. Flood Risk = Hazard • Values • Vulnerability. Water Int, 30(1): 58-68. https://doi.org/10.1080/02508060508691837
  • Landmann G, Held A, Schuck A, Brusselen JV, 2015. European Forests at Risk. A scoping study in support of the development of a European Forest Risk Facility.
  • Lemoine B, 1995. Un modèle de croissance pour le Pin maritime dans les Landes de Gascogne. Revue forestière française, n° spécial 1995: 116-119. https://doi.org/10.4267/2042/26701
  • Lesgourgues Y, Drouineau S, 2009. Elaboration de nouveaux itinéraires techniques de régénération de la forêt landaise en réponse aux scénarios possibles. Innovations Agronomiques, 6: 101-112.
  • Lesgourgues Y, Chantre G (Eds.). 2009. Expertise sur l'avenir du massif des Landes de Gascogne, Rapport de Synthèse du Groupe de travail itinéraires sylvicoles. http://landes.gip-ecofor.org/. Bordeaux: GIP Ecofor, France.
  • Lexer MJ, Honninger K, Scheifinger H, Matulla C, Groll N, Kromp-Kolb H, Schadauer K, Starlinger F, Englisch M, 2002. The sensitivity of Austrian forests to scenarios of climatic change: a large-scale risk assessment based on a modified gap model and forest inventory data. Forest Ecol Manage, 162(1): 53-72. https://doi.org/10.1016/S0378-1127(02)00050-6
  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolstrom M, et al., 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol Manage, 259(4): 698-709. https://doi.org/10.1016/j.foreco.2009.09.023
  • Lindroth A, Lagergren F, Grelle A, Klemedtsson L, Langvall OLA, Weslien PER, Tuulik J, 2009. Storms can cause Europe-wide reduction in forest carbon sink. Glob Change Biol, 15(2): 346-355. https://doi.org/10.1111/j.1365-2486.2008.01719.x
  • Linkov I, Satterstrom FK, Kiker G, Batchelor C, Bridges T, Ferguson E, 2006. From comparative risk assessment to multi-criteria decision analysis and adaptive management: Recent developments and applications. Environ Int, 32: 1072-1093. https://doi.org/10.1016/j.envint.2006.06.013
  • Liu L, Liu A, Li Y, Zhang LX, Zhang GJ, Guan YT, 2016. Polycyclic aromatic hydrocarbons associated with road deposited solid and their ecological risk: Implications for road stormwater reuse. Sci Total Environ, 563: 190-198. https://doi.org/10.1016/j.scitotenv.2016.04.114
  • Loureiro M, Barrio M (Eds.). 2009. Valoración medioambiental, cultural y paisajística de los espacios rurales gallegos: Una perspectiva económica. Santiago de Compostella (Spain): A Coruña: Centro de Investigación Económica y Financiera (CIEF). Fundación Caixa Galicia (Spain).
  • MacMillan DC, Marshall K, 2006. The Delphi process-an expert‐based approach to ecological modelling in data‐poor environments. Animal conservation, 9(1): 11-19. https://doi.org/10.1111/j.1469-1795.2005.00001.x
  • MAGRAMA, 2011. Anuario de Estadística Forestal 2011. Spain: Gobierno de España. Ministerio de Agricultura, Alimentación y Medio Ambiente. pp. 103.
  • Mareschal B, 2013. Visual PROMETHEE. 1.4.0.0. 1.4.0.0. Retrieved from http://www.promethee-gaia.net/
  • Meredieu C, Labbé T, 2006. A stand growth model for maritime pine: Lemoine model. Retrieved from http://capsis.cirad.fr/capsis/help_en/lemoine
  • Nichols JD, Bristow M, Vanclay JK, 2006. Mixed-species plantations: Prospects and challenges. Forest Ecol Manage, 233(2-3): 383-390. https://doi.org/10.1016/j.foreco.2006.07.018
  • Nunes SA, DaCamara CC, Turkman KF, Calado TJ, Trigo RM, Turkman MAA, 2019. Wildland fire potential outlooks for Portugal using meteorological indices of fire danger. Nat Hazards Earth Syst Sci, 19(7): 1459-1470. https://doi.org/10.5194/nhess-19-1459-2019
  • Páscoa F. 1987. Estrutura, crescimento e produção em povoamentos de pinheiro bravo : um modelo de simulação. Universidade Técnica de Lisboa, Instituto Superior de Agronomia, Lisboa, Portugal.
  • Payn T, Carnus J-M, Freer-Smith P, Kimberley M, Kollert W, Liu S, Orazio C, Rodriguez L, Silva LN, Wingfield MJ, 2015. Changes in planted forests and future global implications. Forest Ecol Manage, 352: 57-67. https://doi.org/10.1016/j.foreco.2015.06.021
  • Pirard R, Dal Secco L, Warman R, 2016. Do timber plantations contribute to forest conservation? Environmental Science & Policy, 57: 122-130. https://doi.org/10.1016/j.envsci.2015.12.010
  • Pukkala T, Möykkynen T, Thor M, Rönnberg J, Stenlid J, 2005. Modeling infection and spread of Heterobasidion annosum in even-aged Fennoscandian conifer stands. Can J For Res, 35: 74-84. https://doi.org/10.1139/x04-150
  • Régolini M, Castagneyrol B, Dulaurent-Mercadal A-M, Piou D, Samalens J-C, Jactel H, 2014. Effect of host tree density and apparency on the probability of attack by the pine processionary moth. Forest Ecol Manage, 334: 185-192. https://doi.org/10.1016/j.foreco.2014.08.038
  • Rodrigues JM, 2008. National Eradication Programme for the Pinewood Nematode. In M. M. Mota & P. R. Vieira (Eds.), Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems: Springer Netherlands. pp. 5-14. https://doi.org/10.1007/978-1-4020-8455-3_1
  • Ruzante JM, Davidson VJ, Caswell J, Fazil A, Cranfield JAL, Henson SJ, Anders SM, Schmidt C, Farber JM, 2010. A Multifactorial Risk Prioritization Framework for Foodborne Pathogens. Risk Analysis, 30(5): 724-742. https://doi.org/10.1111/j.1539-6924.2009.01278.x
  • Salas-Garita C, Soliño M, 2019. Estimating the Sustainability of Managed Natural Forests in Costa Rica-A Hybrid Delphi & Choice Experiment Approach. Forests, 10(10): 832. https://doi.org/10.3390/f10100832
  • San-Miguel-Ayanz J, Durrant T, Boca R, Libertà G, Boccacci F, Di Leo M, López Pérez J, Schulte E, 2016. Forest Fires in Europe, Middle East and North Africa, 2015 (Technical reports, JRC).
  • Sánchez-Orois S, Rodríguez-Soalleiro R, 2002. Modelling the Growth and Management of Mixed Uneven-aged Maritime Pine - Broadleaved Species Forests in Galicia, North-western Spain. Scand J For Res, 17: 538-547. https://doi.org/10.1080/02827580260417198
  • Sanz F, Latour S, Neves M, Pischedda D, Piñeiro G, Gauthier T, Lesbats J, Plantier C, Marques A, Lanvin J-D, et al., 2006. Industrial applications of Pinus pinaster. Ourense (Spain): Fernando Sanz, Centro de Innovación e Servizos Tecnolóxicos da Madeira de Galicia. 256 pp.
  • Schelhaas M-J, Nabuurs G-J, Schuck A, 2003. Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol, 9: 1620-1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x
  • Schuler LJ, Bugmann H, Snell RS, 2017. From monocultures to mixed-species forests: is tree diversity key for providing ecosystem services at the landscape scale? Landscape Ecology, 32(7): 1499-1516. https://doi.org/10.1007/s10980-016-0422-6
  • Schwarzbauer P, Stern T, 2010. Energy vs. material: Economic impacts of a "wood-for-energy scenario" on the forest-based sector in Austria - A simulation approach. Forest Policy Econ, 12: 31-38. https://doi.org/10.1016/j.forpol.2009.09.004
  • Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pyšek P, Winter M, Arianoutsou M, et al., 2017. No saturation in the accumulation of alien species worldwide. Nature Communications, 8: 14435. https://doi.org/10.1038/ncomms14435
  • Segura M, Ray D, Maroto C, 2014. Decision support systems for forest management: A comparative analysis and assessment. Comput Electron Agric, 101: 55-67. https://doi.org/10.1016/j.compag.2013.12.005
  • Seidl R, Baier P, Rammer W, Schopf A, Lexer MJ, 2007. Modelling tree mortality by bark beetle infestation in Norway spruce forests. Ecol Model, 206(3-4): 383-399. https://doi.org/10.1016/j.ecolmodel.2007.04.002
  • Seidl R, Fernandes PM, Fonseca TF, Gillet F, Jönsson AM, Merganicová K, Netherer S, Arpaci A, Bontemps J-D, Bugmann H, et al., 2010. Modelling natural disturbances in forest ecosystems: a review. Ecol Model, 222(4): 903-924. https://doi.org/10.1016/j.ecolmodel.2010.09.040
  • Seidl R, Rammer W, Lexer MJ, 2011a. Adaptation options to reduce climate change vulnerability of sustainable forest management in the Austrian Alps. Can J For Res, 41: 694-706. https://doi.org/10.1139/x10-235
  • Seidl R, Rammer W, Lexer MJ, 2011b. Climate change vulnerability of sustainable forest management in the Eastern Alps. Climatic Change, 106(2): 225-254. https://doi.org/10.1007/s10584-010-9899-1
  • Seidl R, Schelhaas M-J, Lexer MJ, 2011c. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Change Biol, 17: 2842-2852. https://doi.org/10.1111/j.1365-2486.2011.02452.x
  • Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ, 2014. Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Change, 4: 806-810. https://doi.org/10.1038/nclimate2318
  • Simard M, Romme WH, Griffin JM, Turner MG, 2011. Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests? Ecol Monogr, 81(1): 3-24. https://doi.org/10.1890/10-1176.1
  • Su H-T, Tung Y-K, 2013. Flood-damage-reduction project evaluation with explicit consideration of damage cost uncertainty. J water resour plan manage, 139(6): 704-711. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000291
  • Temperli C, Bugmann H, Elkin C, 2013. Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr, 83: 383-402. https://doi.org/10.1890/12-1503.1
  • Thompson ID, Okabe K, Parrotta JA, Brockerhoff E, Jactel H, Forrester DI, Taki H, 2014. Biodiversity and ecosystem services: lessons from nature to improve management of planted forests for REDD-plus. Biodiversity and Conservation, 23(10): 2613-2635. https://doi.org/10.1007/s10531-014-0736-0
  • van Lierop P, Lindquist E, Sathyapala S, Franceschini G, 2015. Global forest area disturbance from fire, insect pests, diseases and severe weather events. Forest Ecol Manage, 352: 78-88. https://doi.org/10.1016/j.foreco.2015.06.010
  • Zhang Y, Chen HY, Reich PB, 2012. Forest productivity increases with evenness, species richness and trait variation: a global meta‐analysis. J Ecol, 100(3): 742-749. https://doi.org/10.1111/j.1365-2745.2011.01944.x