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a b s t r a c t

The s-step methods were proposed by Chronopoulos to gain efficiency in parallel
programming of iterative methods for linear systems. They are variants of classical
iterative methods based on the construction of a Krylov subspace basis on each iteration.
These s-step methods were inferred from algorithms like the Conjugate Gradient,
Generalized Conjugate Residual or the Minimal Residual. They converge for all symmetric,
nonsymmetric definite and some nonsymmetric indefinite matrices. In this paper,
we introduce an s-step variant of a General Orthogonalization Algorithm, that is, a
generalization of s-step variants of gradient methods. We prove convergence and obtain
error estimates. We also describe an Orthomin variant, together with a convergence
theorem. From this we derive thewell known s-stepmethods as particular cases, and some
which are newfound to our knowledge. This provides a unified framework to derive and
study s-stepmethods. Some of themethods obtained are convergent for every nonsingular
matrix. Finally, we give some numerical results for the new proposed methods, showing
that the parallel implementation of these overcomes the original ones.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The computational cost of an algorithm is evaluated in terms of arithmetic operations and communication time.
Communication costs are much higher than arithmetic costs. Thus, the recent research on parallel programming efficiency
focuses on minimizing the number of communications [1]. An important research subject is the study of iterative method
solvers for large linear systems [2]. In these numerical methods, most required computations are vector–vector and
matrix–vector operations. In the language of the Basic Linear Algebra Subprograms (BLAS) [3] or the Parallel Basic Linear
Algebra Subprograms (PBLAS) [4], they primarily translate as sdots (inner products) and saxpys (vector updates as a linear
combination of two vectors) i.e., level 1 BLAS operations. On the other hand, BLAS 2 and BLAS 3 operations, based on
submatrix blocks, are much more efficient than BLAS 1 operations on parallel computers with optimized BLAS kernels. This
is because the ratio between the number of operations performed and computer memory accesses increases as we raise the
BLAS level and, with multiprocessors systems, the number of communications between nodes is reduced.

In order to improve the BLAS 2–3/BLAS 1 ratio, the s-stepmethods proposed in [5,6] are an alternative approach for using
BLAS 3 operations in some iterative methods for linear systems. The efficiency of these methods on parallel computers is
corroborated in [7–9].

The aim is to generalize these s-step variants to other Conjugate Gradient type methods in order to obtain iterative
algorithms for the resolution of large linear systems, this also being valid even in the case of nonsymmetric and/or positive
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nondefinite matrices, with better performance in parallel programming. For such purpose we present an s-step variant of a
General Orthogonalization Algorithm that can be seen, for example in [10] or [11], and we obtain different s-step variants
of this method by previously fixing two parameter matrices.

This paper is organized as follows. In Section 2 the notation is established and the s-step variant of themethods proposed
by Chronopoulos, which precedes this work, is presented. Section 3 describes a General Orthogonalization Algorithmwhich
we call GOA for short. It is a generalization of the gradient typemethods in [10] or [11]. Then an s-step variant of thismethod
(s-GOA) is proposed and a theorem of convergence with some previous lemmas are proved. Section 4 proposes an
Orthomin(m) variant of the s-GOA which generalizes the s-step Orthomin(m) method given in [6]. In this section, a
convergence theorem for the s-step Orthomin(m) method proposed is also proved. Section 5 describes the well known
s-step methods obtained as particular cases of the s-GOA and two new methods are proposed, namely the s-Minimal Error
Algorithm and the s-Biconjugate Gradient. In Section 6 we present some numerical results for the new proposed methods.
Finally, Section 7 contains the conclusions of this work.

2. Background

It is assumed throughout this paper that A is a general square nonsingular matrix of order n, b ∈ Rn a column vector, ∥·∥
is the 2-norm in Rn and Mn×s (R) the set of real matrices of order n × s. The matrix norm of A induced by the 2-norm is

∥A∥ = max
v≠0

∥Av∥

∥v∥
(1)

and the condition number of A with respect to the 2-norm

cond(A) = ∥A∥
A−1

 . (2)

Denote the symmetric and the antisymmetric part of A by:

AS
=

1
2
(A + At) (3)

AaS
=

1
2
(A − At). (4)

LetM be a positive definite symmetric matrix of order n, with maximum andminimum eigenvalues denoted by λmax(M)
and λmin(M), respectively. We recall that, for every v ∈ Rn

⟨v,Mv⟩ = vtMv ≥ λmin(M) ∥v∥
2 . (5)

If v1, . . . , vs are column vectors, we denote by (v1 |v2 . . .| vs) the matrix they form and £{v1, . . . , vs} will stand for the
vector subspace they span. In an analogous way, if A1, . . . , As are real matrices, we denote by (A1 |A2 . . .| As) the matrix they
form and £{A1, . . . , As} will stand for the vector subspace spanned by all columns of all matrices. The aim of the iterative
methods, the object of this paper, is the numerical resolution of the linear system

Ax = b (6)

whose exact solution will be denoted by c.
Therefore, it is worthwhile seeking techniques for accelerating the execution of these methods, such as by including

preconditioners [12], or by using wavelets to modify the linear system into another more sparse one [13], or by modifying
themethods to obtain better performance in parallel processing. Among these last therewould be the s-step variants treated
in [5–8], which is the object of generalization in this article.

We shall now recall some elementary key definitions. For each v ∈ Rn, v ≠ 0 and s ∈ N, s < n, we call the vector
subspace £{v, Av, A2v, . . . , As−1v} a Krylov subspace of order s, and we denote it by Ks(A, v).

If dim(Ks(A, v)) < s, and therefore the dimension ofKs(A, v)werenotmaximum, the inverse ofAwould be apolynomial
in A of degree s−1 at most and we could easily construct the exact solution of the system (see, for example, [12, page 149]).
We often refer to this circumstance as lucky breakdown, something which is highly unlikely in practice.

The s-step variant of the Conjugated Gradient algorithm (s-CG) was introduced by Chronopoulos and Gear in [5].
Subsequently, in [6], Chronopoulos proposes s-step variants of other methods which are convergent for nonsymmetric
definite and somenonsymmetric indefinite coefficientmatrices.More specifically, article [6] dealswith the s-step variants of
theGeneralized Conjugated Residualmethod (s-GCR), of theMinimal Residual (s-MR) andof theOrthomin(m) (s-Orthomin(m)),
and particularly for the case s-Orthomin(1) known as s-Conjugate Residual method (s-CR).

In each iteration of the s-step variant, these algorithms compute a base of a Krylov subspace Ks(A, v) of dimension s
and then, by a convenient projection method over the subspace, they calculate the next iterate that minimizes the error
ei = ∥c − xi∥, or the residual norm, ri = b − Axi according to the respective method (s-CG, s-GCR, s-Orthomin (m), etc.),
xi ∈ Rn being the i-th iterate.
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The convergence of these methods in at most [n/s] iterations is proved in [5,6] for symmetric positive definite
matrices in s-CG, for nonsymmetric definite matrices in s-CGR and for indefinite matrices, with definite symmetric part,
in s-Orthomin(m) and s-GCR. Therefore these methods are not convergent for every nonsingular matrix.

The s-step variants of the GMRES and the Double Orthogonal Series can be seen in [14,15], which converge for every
nonsingular matrix. Basing on these, we shall try to construct valid methods for a general nonsingular matrix.

3. The s-step variant of the General Orthogonalization Algorithm

If matrix A is neither necessarily symmetric nor positive definite, there is a more general algorithm than the Conjugate
Gradient method, which we call the General Orthogonalization Algorithm (GOA). In what follows we describe this method
in a summarized way (see [10] or [11], for example).

Let Ax = b be the linear system of order nwith nonsingular matrix A. LetH, K be squarematrices of order nwith positive
definite symmetric part. We set:

N = AtHSA and M = LtNL (7)

where LtL is the Cholesky factorization of the symmetric part of K , and then K S
= LLt . For all r ∈ Rn let us define

E(r) = ⟨r,Hr⟩. From the equality E(r) = ⟨H t r, r⟩ = ⟨r,Hr⟩ we get the alternative definition:

E(r) =


r,

1
2
(H + H t)r


= ⟨r,HSr⟩. (8)

Then E(r) must be a convex function. Next we write the GOA, which is presented in [10]:

Algorithm 3.1 (GOA).
Let x0 ∈ Rn,
r0 = b − Ax0 = A(x − x0)
g0 = AtHSr0 = AtHSA(x − x0) = N(x − x0)
p0 = Kg0
For i = 0, 1, . . . until convergence Do:

αi =
⟨gi, pi⟩
⟨pi,Npi⟩

(9)

xi+1 = xi + αipi (10)

gi+1 = gi − αiNpi = AtHSri+1 (11)

β l
i+1 = −

⟨Kgi+1,Npl⟩
⟨pl,Npl⟩

, l = 0, . . . , i (12)

pi+1 = Kgi+1 +

i
l=0

β l
i+1pl (13)

EndFor.

We denote as vectors gi the general residues, and as vectors pi the general descent directions. The following results are
proved in [10]:

(i) ri = b − Axi, i = 0, 1, 2, . . . .
(ii) ⟨pi,Npj⟩ = 0 for all i ≠ j.
(iii) ⟨gi, pj⟩ = 0 for all 0 ≤ j ≤ i.
(iv) ⟨gi, Kgj⟩ = 0 for all 0 ≤ j ≤ i.
(v) If g0 · · · gn−1 ≠ 0 then gn = 0.
(vi) £{p0, . . . , pi−1} = £{Kg0, Kg1, . . . , Kgi−1} = Ki(KN, Kg0).
(vii) The residual ri+1 minimizes E(r) over the affine subspace x0 + £{p0, . . . , pi−1}.

Consequently the GOA converges in at most n iterations. Moreover, if we denote by Ei = E(ri) = ⟨ri,HSri⟩, then the
following error estimate is proved in [10]:

Ei ≤ E0


1 −

λmin(Lt(K−1)SL)
cond(M)

i

(14)

and, if matrix K is symmetric:

Ei ≤ E0


cond(M) − 1
cond(M) + 1

2i

. (15)
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Observe that, if K is a symmetric matrix, then (iv) is valid for every i ≠ j and taking the value of Npl from (11) to (12), we
get β l

i+1 = 0 for all 0 ≤ l < i and the sum in (13) reduces to the last term. In this case, storage of the preceding directions
pl, l = 0, . . . , i − 1, is not necessary to compute pi+1. On the contrary, if K is a nonsymmetric matrix, and more than a
few iterations are needed, then the storage requirements become prohibitive. To circumvent this, the general Orthomin(m)
method computes pi+1 by N-orthogonalizing to the m preceding directions only. The parameter m is previously chosen,
usually between 3 and 10, depending on the order of the matrix. Giving matrix H and K particular values in the GOA, we
obtain some known methods like the Conjugate Gradient, Preconditioned Conjugate Gradient, Normal Equation, Minimal
Error, Generalized Conjugate Residual and Axelsson’s Minimal Residual [10].

In order to unburden the notation, we define:

Definition 3.1. Let n, s ∈ N (s < n),M ∈ Mn×n (R). Then we define the application ∆M : Rn
−→ Mn×s (R) by:

∆M(v) = (v |Mv|M2v |. . .|Ms−1v) for all v ∈ Rn. (16)

We shall often use the following elementary but important properties:

1. ∆M(αu + βv) = α∆M(u) + β∆M(v) for all α, β ∈ R and u, v ∈ Rn, then ∆M is a linear application.
2. ∆M(Mkv) = Mk∆M(v) for all v ∈ Rn and k ∈ N.

Then Ks(KN, Kg0) is the vector subspace generated by the column vectors of the matrix ∆KN(Kg0). We define the s-step
variant of the GOA (s-GOA):

Algorithm 3.2 (s-GOA).
Let x0 ∈ Rn

r0 = b − Ax0
g0 = AtHSr0
P0 = ∆KN(Kg0) = Q0
For i = 0, 1, 2, . . . until convergence Do

Wi = (Pi)tNPi (17)

zi = (Pi)tgi (18)

yi = (Wi)
−1zi (19)

xi+1 = xi + Piyi (20)

gi+1 = gi − NPiyi = AtHSri+1 (21)

Qi+1 = ∆KN(Kgi+1) (22)

For j = 0, . . . , i Do:

Bj
i+1 = −W−1

j (Pj)tNQi+1 (23)

EndFor

Pi+1 = Qi+1 +

i
j=0

PjB
j
i+1 (24)

EndFor.

By induction on iwe can obtain in (21) the following equation for the residual:

ri+1 = ri − APiyi. (25)

Comparing GOA (Algorithm 3.1) with s-GOA (Algorithm 3.2) it is easy to verify that BLAS 1 and BLAS 2 become BLAS 2 and
BLAS 3 operations, respectively.

We establish the following lemma relating direction and general residual vectors of s-GOA:

Lemma 3.1. It holds that:
(a) (Pi)tNPj = 0 for all i ≠ j.
(b) (Pj)tgi = 0 for all i > j.
(c) (Pi)tgi = (Qi)

tgi.
(d) (Qj)

tgi = 0 for all i > j.
(e) (Pi)tNQj = 0 for all i > j.
(f) (Pi)tNPi = (Pi)tNQi.
(g) (Pi)tgj = (Pi)tg0 for all i ≥ j.
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Proof. (a) We have:

(Pj)tNPi = (Pj)tNQi + (Pj)tN
i−1
k=0

PkBk
i (26)

and

(Pj)tNPjB
j
i = −(Pj)tNQi. (27)

Therefore from Eqs. (17) and (23) in Algorithm 3.2, we can easily prove by induction on i > j that:

(Pj)tNPi = 0. (28)

(b) For a fixed j ∈ N we obtain by induction on i that gi is orthogonal to Pj for all i > j:
If i = j + 1, since

gj+1 = gj − NPjyj (29)

we conclude that gj+1 is orthogonal to Pj by definition of yj,Wj and zj.
Now suppose that gi is orthogonal to Pj, with i > j + 1. Then, the orthogonality between gi+1 and Pj is a consequence of

the induction hypothesis and N-orthogonality between Pi and Pj.
(c) This equality follows from definition of Pi and (b).
(d) Since Qj = Pj −

j−1
k PkBk

j then (b) implies (d).
(e) This is also from Qj = Pj −

j−1
k PkBk

j and (a).
(f) This equality follows from definition of Pi and (a).
(g) The identity gj = gj−1 − NPj−1yj−1 and induction give (g). �

Remember that {p0, p1, . . . , p(i+1)s−1} are the direction vectors computed in GOA and we denote by p1i , . . . , p
s
i the

direction vectors of s-GOA in each iteration, and then Pi = (p1i |· · ·| psi ). Now, we can establish the following lemma relating
Krylov and direction subspaces generated in both algorithms:

Lemma 3.2. Let i, s ∈ N be such that s(i + 1) ≤ n. Suppose that gi ≠ 0. If dimKs(i+1)(KN, Kg0) = s(i + 1) then:

£{P0, . . . , Pi} =

i
j=0

Ks(KN, Kgj) = Ks(i+1)(KN, Kg0) = £{p0, p1, . . . , p(i+1)s−1}, (30)

where


denotes the direct sum of vectorial subspaces.
Moreover ri+1 minimizes E(r) = ⟨ri,HSri⟩ over x0 + £{P0, . . . , Pi}.

Proof. It is obvious that
i

j=0 Ks(KN, Kgj) = £{Q0, . . . ,Qi}. Then, the equality

£{P0, . . . , Pi} =

i
j=0

Ks(KN, Kgj) (31)

is proved by induction since P0 = Q0 and the definition of Pi, from which we can also obtain that Qi = Pi −
i−1

j=0 PjB
j
i.

The equality

i
j=0

Ks(KN, Kgj) = Ks(i+1)(KN, Kg0) (32)

is trivial for i = 0. The inclusion

i
j=0

Ks(KN, Kgj) ⊂ Ks(i+1)(KN, Kg0) (33)

is proved by induction since:

(KN)kKgi = (KN)k(Kgi−1 − KNPi−1yi−1) (34)

for k ∈ {0, . . . , s − 1} and, because of equality (31) and the induction hypothesis

(KN)k+1p1i−1, . . . , (KN)k+1psi−1 ∈ Ks(i+1)(KN, Kg0) (35)

so (k + 1) + (s · i − 1) = k + s · i ≤ s(i + 1) − 1, and then (KN)kKgi ∈ Ks(i+1)(KN, Kg0).
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The other inclusion

Ks(i+1)(KN, Kg0) ⊂

i
j=0

Ks(KN, Kgj) (36)

is also proved by induction. Suppose that the inclusion verifies for i − 1, i > 1 fixed. Since

gi = g0 +

is−1
j=0

λjN(KN)jKg0, (37)

which stems from (31), (33) and by induction in gi = gi−1 − NPi−1yi−1, we have, for k ∈ {0, . . . , s − 1}

(KN)kKgi = (KN)kKg0 +

is−1
j=0

λj(KN)j+k+1Kg0. (38)

Now, if we prove thatλs·i−1 ≠ 0 thenKs(i+1)(KN, Kg0) ⊂
i

j=0 Ks(KN, Kgj). Butλs·i−1 ≠ 0 because ifλs·i−1 = 0 in (37), then
Kgi ∈ Ks·i(KN, Kg0). From the induction hypothesis and (31), Kgi ∈ ⟨P0, . . . , Pi−1⟩, which implies, by part (b) of Lemma 3.1,
that ⟨gi, Kgi⟩ = 0. This is a contradiction if gi ≠ 0 because the symmetric part of K is positive definite.

The last equality Ks(i+1)(KN, Kg0) = £{p0, p1, . . . , p(i+1)s−1} is result (vi) of GOA’s properties previously cited.
Finally, let ri+1 be the residual which corresponds to iterate xi+1. From definition of ri+1 and by induction we have

ri+1 = r0 −

i
j=0

(APjyj). (39)

Since (APj)tHsr0 = (Pj)tg0 = (Pj)tgj = zj for all j = 0, . . . , i, using (39) and part (a) of Lemma 3.1 we have that

E(ri+1) = ⟨r0,HSr0⟩ − 2
i

j=0

ytj zj +
i

j=0

ytjWjyj. (40)

Since E(r) is convex, ri+1 is the minimal of E(r) over x0 + £{P0, . . . , Pi} if the coefficient vectors yj, with j = 0, . . . , i, are the
solutions of the linear systemsWjyj = zj, but this is true by the definition of yj in s-GOA. �

Observation.

• As a result of the Lemma 3.2, for all i = 0, 1, 2, . . . , matrices Pi have rank s. From definition of Wi, we have that, for all
v ∈ Rs, v ≠ 0 then vtWiv = ⟨Pivi,NPivi⟩ is strictly positive, andWi is positive definite and consequently nonsingular.

• Let r̃i and ri be the residual vectors in the ith iteration of the GOA and s-GOA, respectively. Since E(r) is a convex function
and from Lemma 3.2, if x0 is the same for GOA and s-GOA then r̃s·i = ri in exact arithmetic.

From Lemmas 3.1 and 3.2 we obtain the following convergence theorem:

Theorem 3.1. If all previous hypothesis hold, the s-GOA converges in at most [n/s] iterations.

Proof. Let i ∈ N. Since Lemmas 3.1 and 3.2, if gi ≠ 0 then gi is orthogonal to Ks·i(KN, Kg0). But dimKs·i(KN, Kg0) = s · i,
and then, if s · i ≥ n it is necessarily gi = 0. This implies that ri = 0, because gi = AtHSri and AtHS is nonsingular. �

Moreover, thanks to the previous observation, we can establish the error estimate:

Theorem 3.2. Under the hypothesis of Lemma 3.1, if ri is the residual vector in the ith iteration of the s-GOA and Ei = E(ri), it
verifies:

Ei ≤ E0


1 −

λmin(Lt(K−1)SL)
cond(M)

s·i

. (41)

Moreover, if the matrix K is symmetric, we have:

Ei ≤ E0


cond(M) − 1
cond(M) + 1

2s·i

. (42)

Proof. The proof is obvious from the error estimate (14) and (15) in GOA and since r̃s·i = ri. �
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As seen in GOA, we need all the previous matrices Pj, j = 0, . . . , i in s-GOA, for the computation of Bj
i+1. If more than a

few iterations are needed, then the storage requirements become prohibitive. Thanks to the following lemma, when matrix
K is symmetric it will only be necessary to store the last of the series of all previous matrices Pj for the computation of
matrices Bj

i+1.

Lemma 3.3. If matrix K is symmetric then, for j = 0, . . . , i − 1

(Pj)tNQi+1 = 0. (43)

Proof. Let j ∈ {0, . . . , i − 1} fixed. Then (Pj)tNQi+1 is a square matrix of order s whose kl element is ⟨(KN)k−1Kgi+1,Nplj⟩,
with k, l ∈ {1, . . . , s}. If K is symmetric then

⟨(KN)k−1Kgi+1,Nplj⟩ = ⟨gi+1, (KN)kplj⟩. (44)

From Lemma 3.2 we get plj ∈ Ks(j+1)(KN, Kg0) for l = 1, . . . , s. So, if j ≤ i − 1 and k ∈ {1, . . . , s} then (KN)kplj ∈

Ks(i+1)(KN, Kg0) because k + (j + 1)s − 1 ≤ s + i · s − 1 = s(i + 1) − 1. But again, from (b) of Lemmas 3.1 and 3.2,
gi+1 is orthogonal to P0, . . . , Pi whose columns span Ks(i+1)(KN, Kg0), then gi+1 is orthogonal to Ks(i+1)(KN, Kg0) and thus
we conclude that if 0 ≤ j ≤ i − 1 then the right side of (44) is zero. �

In this way, if K is symmetric, Eqs. (23) and (24) of s-GOA becomes:

Bi+1 = −W−1
i (Pi)tNQi+1 (45)

and

Pi+1 = Qi+1 + PiBi+1. (46)

4. The s-step variant of the Orthomin(m) method

If matrix K is nonsymmetric the GOA and its s-step variant require the storage of all the previous directions in each
iteration. To avoid this, the Orthomin(m) method computes only the m previous directions, in the GOA, or the previous m
Krylov subspaces in the s-GOA, m ∈ N. Nevertheless, in exact arithmetic, it will not be possible to assure the convergence
of the Orthomin(m) method in a finite number of iterations. The Orthomin(m) method is written in a similar way as
Algorithm 3.1 replacing l = 0, . . . , i by l = i − m + 1, . . . , i in (12) and (13). Analogously the s-step variant of the
Orthomin(m) is obtained replacing j = 0, . . . , i by j = i − m + 1, . . . , i in Eqs. (23) and (24) of the s-GOA Algorithm 3.2.

The following lemma for s-step Orthomin(m) method has a proof completely analogous to the corresponding parts of
Lemmas 3.1 and 3.2:

Lemma 4.1. In the s-step Orthomin(m) method, if gi ≠ 0 and dimKs(m+1)(KN, Kgi−m) = s(m + 1) then:

(a) Pi is N-orthogonal to Pj for all i − m < j < i.
(b) (Pj)tgi = 0 for all i − m < j < i.
(c) ri+1 minimizes E(r) over xi−m + ⟨Pi−m, . . . , Pi⟩.

Next we prove that s-step Orthomin(m) converges but, in exact arithmetic, it may require an infinite number of steps.
First we tackle the following lemmas, also true for the s-GOA:

Lemma 4.2. Let Ei = E(ri)where ri, for i = 0, 1, . . . , is the residual vector generated in each iteration of the s-stepOrthomin(m)
then:

Ei+1 = Ei − (P t
i gi)

tW−1
i P t

i gi (47)

and thus:

lim
i→∞

(P t
i gi)

tW−1
i P t

i gi = 0. (48)

Proof. We have that

Ei+1 = ⟨ri+1,HSri+1⟩ = ⟨ri − APiyi,HS(ri − APiyi)⟩ (49)

since N = AtHSA, we obtain

Ei+1 = Ei − 2⟨APiyi,HSri⟩ + ⟨Piyi,NPiyi⟩. (50)
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But, using thatWi = P t
i NPi, and substituting yi = W−1

i P t
i gi in the last summand of (50)

⟨Piyi,NPiyi⟩ = ytiWiyi = (W−1
i P t

i gi)
tWi(W−1

i P t
i gi) = g t

i PiW
−1
i P t

i gi. (51)

Moreover, since gi = AtHSri we obtain that

⟨APiyi,HSri⟩ = (PyW−1
i P t

i gi)
tgi = g t

i PiW
−1
i P t

i gi. (52)

Substituting now in (50) we conclude that Ei+1 = Ei − (P t
i gi)

tW−1
i P t

i gi.
The second part of the lemma is a direct consequence that Ei is a nonnegative, monotonously decreasing succession and

therefore convergent. In this way limi→∞ Ei = limi→∞ Ei+1, and thus

lim
i→∞

(P t
i gi)

tW−1
i P t

i gi = lim
i→∞

Ei − lim
i→∞

Ei+1 = 0. � (53)

Lemma 4.3. Under the preceding notations we haveP t
i gi
 ≥ λmin(K S) ∥gi∥2 . (54)

Proof. From definition of Pi from (b) in Lemma 4.1 we get P t
i gi = Q t

i gi. Then

P t
i gi
2 =

Q t
i gi
2 =

s−1
k=0


⟨(KN)kKgi, gi⟩2


. (55)

Thus: P t
i gi
2 ≥ ⟨Kgi, gi⟩2 = ⟨K Sgi, gi⟩2 (56)

and, since K S is symmetric positive definite, from (5) we conclude thatP t
i gi
2 ≥


λmin(K S) ∥gi∥22 . � (57)

Lemma 4.4. For each i ∈ N we have

λmax(Wi) ≤ λmax(N)


∥K∥

∥KN∥
s
− 1

∥KN∥ − 1

2

∥gi∥2 . (58)

Proof. Let v ∈ Rs be the eigenvector ofWi associated to the eigenvalue λmax(Wi) and so that ∥v∥ = 1, and thus:

λmax(Wi) = vtWiv = vtP t
i NPiv. (59)

On the other hand, from definition of Pi

P t
i NPi =


Qi +

i−1
j=i−m

PjB
j
i

t

N


Qi +

i−1
j=i−m

PjB
j
i


(60)

using the orthogonality properties of the Lemma 4.1 we obtain that

P t
i NPi = Q t

i NQi +

i−1
j=i−m

Q t
i NPjB

j
i +

i−1
j=i−m

(PjB
j
i)
tNQi +

i−1
j=i−m

(PjB
j
i)
tNPjB

j
i. (61)

From definition of Bj
i and because of the symmetry of N andWj:

Q t
i NPjB

j
i = −Q t

i NPjW
−1
j P t

j NQi, (62)

(PjB
j
i)
tNQi = −(W−1

j P t
j NQi)

tP t
j NQi = −Q t

i NPjW
−1
j P t

j NQi (63)

and, since P t
j NPjW

−1
j = WjW−1

j = I

(PjB
j
i)
tNPjB

j
i = (W−1

j P t
j NQi)

tP t
j NPj(W

−1
j P t

j NQi) = Q t
i NPjW

−1
j P t

j NQi. (64)
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Then we can substitute (62)–(64) in (61) and obtain

P t
i NPi = Q t

i NQi −

i−1
j=i−m

Q t
i NPjW

−1
j P t

j NQi. (65)

Since Q t
i NPjW

−1
j P t

j NQi are symmetric positive definite we can assure that

vtP t
i NPiv ≤ vtQ t

i NQiv ≤ λmax(N) ∥Qiv∥
2 . (66)

On the other hand, if (v1, . . . , vs) are the coordinates of v respect to the canonic base of Rs,

∥Qiv∥ =
v1Kgi + v2(KN)Kgi + · · · + vs(KN)s−1Kgi

 . (67)

Using the triangular inequality and the fact that ∥v∥ = 1, we havev1Kgi + · · · + vs(KN)s−1gi
 ≤


∥K∥ + · · · +

(KN)s−1K
 ∥gi∥ (68)

and

∥K∥ + · · · +
(KN)s−1K

 ≤ ∥K∥

1 + ∥KN∥ + · · · +

(KN)s−1
 = ∥K∥

∥KN∥
s
− 1

∥KN∥ − 1
. (69)

We can then conclude that

λmax(Wi) = vtP t
i NPiv ≤ λmax(N)


∥K∥

∥KN∥
s
− 1

∥KN∥ − 1

2

∥gi∥2 . � (70)

Finally we enunciate the following convergence theorem for the s-step Orthomin(m) method:

Theorem 4.1. Under the hypotheses of previous lemmas, we have

lim
i→∞

ri = 0. (71)

Proof. Since Lemma 4.2

Ei+1 = Ei − (P t
i gi)

tW−1
i P t

i gi. (72)

Sequence Ei is nonnegative and monotonously decreasing. Then there are two possibilities:

(a) There exists i ∈ N so that Ei = Ei+1. Then (P t
i gi)

tW−1
i P t

i gi = 0, which implies that P t
i gi = 0 since W−1

i is positive
definite. Then, from (b) of Lemma 4.1 and definition of Pi,Q t

i gi = 0. In particular ⟨Kgi, gi⟩ = 0, then gi = 0 and the
method converges.

(b) For all i ∈ N it verifies that Ei < Ei+1. Then Ei converges since it is strictly decreasing and Ei ≥ 0. Thus:

lim
i→∞

(Ei − Ei+1) = 0 = lim
i→∞

(P t
i gi)

tW−1
i P t

i gi. (73)

In this way, for each ε > 0, there exists k ∈ N so that (P t
kgk)

tW−1
k P t

kgk < ε. On the other hand

(P t
kgk)

tW−1
k P t

kgk ≥ λmin(W−1
k )

P t
kgk
2 =

1
λmax(Wk)

P t
kgk
2 (74)

and applying previous Lemmas 4.3 and 4.4, we obtain that

1
λmax(Wk)

P t
kgk
2 ≥

λmin(K S)2 (∥KN∥ − 1)2

λmax(N) ∥K∥
2 

∥KN∥
s
− 1

2 ∥gk∥2 . (75)

We have proved that, for each ε > 0, there exists k ∈ N so that

∥gk∥2 < ε
λmax(N) ∥K∥

2 
∥KN∥

s
− 1

2
λmin(K S)2 (∥KN∥ − 1)2

(76)

which implies that limi→∞ gi = 0, and then limi→∞ ri = 0. �
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5. Particular cases of the s-GOA

From particular choices of matrices H and K , first we shall proceed to obtain the known s-step methods (Preconditioned
s-Conjugate Gradient, s-Generalized Conjugate Residual and s-Normal Equation) and then we shall propose new s-step
variants.

5.1. Preconditioned s-Conjugate Gradient Algorithm

Suppose that matrix A is symmetric positive definite. Let H = A−1 and K any symmetric positive definite matrix. Then
N = A and the s-GOA becomes the s-step variant of the Preconditioned Conjugate Gradient Algorithm proposed in [7]. In
the particular case of K = I we have the s-step variant of the Conjugate Gradient Method [5].

From Lemmas 3.1 and 3.2 we obtain the following orthogonality properties:

(i) P t
i APj = 0 for all i ≠ j.

(ii) P t
j ri = 0 for all i > j. In particular ⟨ri, Krj⟩ = 0 for all i > j.

(iii) ri+1 minimizes E(r) = ⟨r, A−1r⟩ = ⟨c − x, A(c − x)⟩ over x0 + £{P0, . . . , Pi}.

5.2. s-Generalized Conjugate Residual Algorithm

Now choose H = I and K = A−1. Then N = A2 and we obtain the s-step variant of the Generalized Conjugate Residual
Algorithm proposed in [6]. If matrix A is symmetric positive definite, then K is symmetric and this method is the s-step
variant of the Conjugate Residual Algorithm [5].

The properties for these methods from Lemmas 3.1 and 3.2 are:

(i) (APi)t(APj) = 0 for all i ≠ j.
(ii) AP t

j ri = 0 for all i > j. In particular ⟨ri, Arj⟩ = 0 for all i > j.
(iii) ri+1 minimizes E(r) = ⟨r, r⟩ over x0 + £{P0, . . . , Pi}.

Sincematrix K is not symmetric in general we can consider the Orthomin(m)method for this algorithm. The Orthomin(0)
is the s-step variant of the Minimal Residual Algorithm proposed in [6], and the Orthomin(1) is the s-step variant of the well
known Axelsson’s Minimal Residual [16]. In these cases it holds, from (c) in Lemma 4.1, that ri+1 minimizes E(r) = ⟨r, r⟩
over xi + Pi.

5.3. s-Normal Equation algorithm

Now A is a nonsingular matrix, H = I and K = I . Then N = AtA and the resulting algorithm is the s-step variant of the
Normal Equation which appears in [17].

The properties from Lemmas 3.1 and 3.2 are:

(i) (APi)t(APj) = 0 for all i ≠ j.
(ii) AP t

j ri = 0 for all i > j. In particular ⟨Ari, Arj⟩ = 0 for all i > j.
(iii) ri+1 minimizes E(r) = ⟨r, r⟩ over x0 + £{P0, . . . , Pi}.

5.4. s-Minimal Error Algorithm

Let A be a nonsingular matrix, H = (AAt)−1 and K = AtA. Then K is symmetric and N = I . In this case we have that
gi = A−1ri and zi = P t

i gi. Then vector zi depends on A−1 whose calculation would render the algorithm useless in practice.
To avoid computing gi we introduce the following matrices:

• Ri = ∆AAt (ri),
• Q0 = R0,
• Qi = Ri + Qi−1Bi−1 for i > 0.

It is obvious that Pi = AtQi and, since P t
i Pi−1 = 0, we deduce

Q t
i (AA

t)Qi−1 = 0. (77)

Thus we propose in this paper the s-step variant of the Minimal Error Algorithm.
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Algorithm 5.1 (s-Minimal Error).
Let x0 ∈ Rn

r0 = b − Ax0
Q0 = ∆AAt (r0).
For i = 0, 1, 2, . . . until convergence Do

Pi = AtQi

Wi = P t
i Pi

zi = Q t
i ri

yi = W−1
i zi

xi+1 = xi + Piyi
ri+1 = ri − APiyi
Ri+1 = ∆AAt (ri+1)

Bi+1 = −W−1
i (APi)tRi+1

Qi+1 = Ri+1 + QiBi+1

EndFor.

The orthogonalization properties from Lemmas 3.1 and 3.2 are:

(i) (Pi)t(Pj) = 0 for all i ≠ j.
(ii) P t

j A
−1ri = 0 for all i > j. In particular ⟨ri, rj⟩ = 0 for all i > j.

(iii) ri+1 minimizes E(r) = ⟨A−1r, A−1r⟩ = ⟨x − c, x − c⟩ over x0 + £{P0, . . . , Pi}.

5.5. s-Biconjugate Gradient

If A is a nonsingularmatrix, the Biconjugate Gradientmethod, [18], generates two CG-like sequences of vectors, one based
on a system with the original coefficient matrix A, and another one with At . In this subsection we propose an s-step variant
of the Biconjugate Gradient method. First, we define the following matrices:

A =


0 A
At 0


, X =


x∗

x


, B =


b
b∗


. (78)

Let

H = (A−1)t =


0 (At)−1

A−1 0


and K =


0 I
I 0


, (79)

then N = AtHA = A is a symmetric matrix. Superscript ∗ denotes the array part which is associated to the sequence based
on At . Now, the s-step variant of the Biconjugate Gradient method can be derived from the s-GOA method:

Algorithm 5.2 (s-Biconjugate Gradient).
Let X0 ∈ R2n

R0 = B − AX0
P0 = ∆KA(KR0)

For i = 0, 1, 2, . . . until convergence Do

Wi = Pt
iAPi (80)

yi = W−1
i Pt

iRi (81)

Xi+1 = Xi + Piyi (82)
Ri+1 = Ri − APiyi (83)

Qi+1 = ∆KA(KRi+1) (84)

Bi+1 = −(Wi)
−1Pt

iAQi+1 (85)

Pi+1 = Qi+1 + PiBi+1 (86)

EndFor.
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Next we will write the s-Biconjugate Gradient method in terms of n-dimensional vectors. For this purpose we denote by

Pi =


P∗

i
Pi


, Qi =


Q ∗

i
Qi


and Ri =


ri
r∗

i


(87)

and enunciate the following lemma:

Lemma 5.1. In the s-Biconjugate Gradient method, and for all k ∈ {0, 1, 2, . . .}, it holds that:

(a)

Q ∗

i

t Akri = Q t
i


At
k r∗

i .

(b)

Q ∗

i

t AkQi = Q t
i


At
k Q ∗

i .

Proof. It is obvious from the fact that, for all k ∈ {0, 1, 2, . . .},

r ti

Atk r∗

i =

r∗

i

t Akri. � (88)

Now, the following lemma can be enunciated as a consequence of Lemmas 3.1 and 5.1:

Lemma 5.2. In the s-Biconjugate Gradient method, and for all k ∈ {0, 1, 2, . . .}, it holds that:

(a) (P∗

i )tAkPi = P t
i


At
k P∗

i .

(b) (P∗

i )tAkri+1 = P t
i


At
k r∗

i+1.
(c) (P∗

i )t ri+1 = P t
i r

∗

i+1 = 0.
(d) (P∗

i )t ri = P t
i r

∗

i = (Q ∗

i )t ri = Q t
i r

∗

i .

Proof. Wewill prove statements (a) and (b) by induction on i. For i = 0 statements (a) and (b) are true from Lemma 5.1 and
since R1 = R0 − AP0y0. Suppose that (a) and (b) are true for i − 1 with i ≥ 1, then, using (86),

(P∗

i )tAkPi = (Q ∗

i )tAkQi + (Q ∗

i )tAkPi−1Bi−1 + Bt
i−1(P

∗

i−1)
tAkQi + Bt

i−1(P
∗

i−1)
tAkPi−1Bi−1 (89)

and

P t
i


Atk P∗

i = Q t
i (A

t)kQ ∗

i + Q t
i (A

t)kP∗

i−1Bi−1 + Bt
i−1P

t
i−1(A

t)kQ ∗

i + Bt
i−1P

t
i−1(A

t)kP∗

i−1Bi−1. (90)

The first summands of the second right hand side of (89) and (90) are equal as a consequence of Lemma 5.1. So are the
other corresponding summands by the induction hypothesis on (a) and (b), which proves (a). On the other hand, using Eq.
(83),

(P∗

i )tAkri+1 = (P∗

i )tAkri − (P∗

i )tAk+1Piyi (91)

and

P t
i


Atk r∗

i+1 = P t
i


Atk r∗

i − P t
i


Atk+1

(Pi)∗yi. (92)

Then equality (b) is derived from (a), Lemma 5.1 and induction hypothesis since Pi = Qi + Pi−1Bi.
Section (c) follows from statement (b) of Lemma 3.1, and statement (d) from Eq. (86) and previous (c). �

Now, by the previous Lemma 5.2, we can write

Wi = (P∗

i )tAPi + P t
i A

tP∗

i = 2(P∗

i )tAPi (93)

and (81) can be written as

Wiyi = 2(P∗

i )t ri. (94)

As consequence of section (b) of Lemma 5.2, we have that

(P∗

i )tAQi+1 = P t
i A

tQ ∗

i+1, (95)

and then from (85) we get

Bi+1 = −(Wi)
−1 P t

i A
tQ ∗

i+1 + (P∗

i )tAQi+1


= −2(Wi)
−1 P t

i A
tQ ∗

i+1


. (96)

Finally, we can write again the s-Biconjugate Gradient method in the following way:
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Table 1
s-Step methods.

Algorithm Convergence condition H K

s-Conjugate Gradient A s. p. d. A−1 I
s-Preconditioned Conjugate Gradient A s. p. d. A−1 Any
s-Conjugate Residual A s. p. d. I A−1

s-Normal Equation A nonsingular I I
s-Minimal Error A nonsingular (AAt )−1 AtA
s-Generalized Conjugate Residual AS s. p. d. I (A−1)t

s-Minimal Residual AS s. d. p. I (A−1)t

s-Biconjugate Gradient – (A−1)t K

Algorithm 5.3 (s-Biconjugate Gradient).
Let x0, x∗

0 ∈ Rn

r0 = b − Ax0
r∗

0 = b∗
− Atx∗

0
P0 = ∆A(r0)
P∗

0 = ∆At (r∗

0 )
For i = 0, 1, 2, . . . until convergence Do

Wi = (P∗

i )tAPi
yi = W−1

i (P∗

i )t ri
xi+1 = xi + Piyi
ri+1 = ri − APiyi
r∗

i+1 = r∗

i − AtP∗

i yi
Qi+1 = ∆A(ri+1)

Q ∗

i+1 = ∆At (r∗

i+1)

Bi+1 = −(Wi)
−1(P∗

i )tAQi+1

Pi+1 = Qi+1 + PiBi+1

P∗

i+1 = Q ∗

i+1 + P∗

i Bi+1

EndFor.

Remark. Since matrices N and K are not positive definite in general, Theorem 3.1 cannot be used to assure the convergence
of the s-Biconjugate Gradient. In practice, we expect convergence to occur in similar conditions to the usual Biconjugate
Gradient method.

5.6. Other s-step methods

Suppose that matrix A is symmetric positive definite. We can obtain two new s-stepmethods takingH = A−1 and K = A,
and then N = A, for the first, and H = (AAt)−1 and K = A, and then N = I , for the second. Matrix K is symmetric positive
definite in both algorithms.

The first s-step method minimizes E(r) = ⟨r, A−1r⟩ and its orthogonalization properties are:

(i) (Pi)tA(Pj) = 0 for all i ≠ j.
(ii) P t

j ri = 0 for all i > j. In particular ⟨ri, Arj⟩ = 0 for all i > j.

The second one minimizes E(r) = ⟨x − c, x − c⟩ and its orthogonalization properties are:

(i) (Pi)t(Pj) = 0 for all i ≠ j.
(ii) P t

j A
−1ri = 0 for all i > j. In particular ⟨ri, rj⟩ = 0 for all i > j.

Table 1 summarizes the s-step methods obtained as particular cases of s-GOA and the convergence condition on the
coefficient matrix A. To our knowledge, the two methods in italic are so far unpublished.

6. Numerical results

The performance gains of parallel implementations of the s-steps methods have been shown in some of the cited
references, alongside the numerical results presented. We can find numerical examples of s-Conjugate Gradient in [5,7,
17], of the s-Preconditioned Conjugate Gradient in [7,17], and of the s-Conjugate Residual in [5,17]. Numerical results for
the s-step variant of Orthomin(m) are obtained in [8,19]. In this section we present some numerical results for the two new
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Table 2
Iterations s-Minimal Error.

s = 1 s = 2 s = 4 s = 6 s = 8

Iterations 15526 8305 3897 2590 1570

Table 3
Iterations s-BiCG.

s = 1 s = 2 s = 4 s = 6

Iterations 277 140 94 49

Table 4
Execution times in seconds s-Minimal Error.

s = 1 s = 2 s = 4 s = 6 s = 8

Nth = 1 190.22 198.99 188.77 197.04 186.59
Nth = 2 157.40 118.91 107.92 107.36 87.14
Nth = 4 90.99 83.72 72.28 68.45 55.56
Nth = 8 83.64 66.84 56.24 54.32 44.06
Nth = 16 83.49 61.53 54.01 49.85 40.24

Table 5
Execution times in seconds s-BiCG.

s = 1 s = 2 s = 4 s = 6

Nth = 1 3.23 2.87 2.71 2.72
Nth = 2 1.42 1.22 1.18 1.08
Nth = 4 0.74 0.65 0.64 0.53
Nth = 8 0.38 0.35 0.34 0.31
Nth = 16 0.41 0.41 0.37 0.28

Fig. 1. Speedup for s-Minimal Error.

methods proposed in this work, the s-Minimal Error and the s-Biconjugate Gradient. These examples were executed on the
Finis Terrae at the Centro de Supercomputación de Galicia (CESGA). This supercomputer is an integrated system with shared
memory nodes with a NUMA SMP architecture. It is composed of 142 HP Integrity rx7640 nodes with 16 ItaniumMontvale
cores. For the parallel implementation we use OpenMp and execute 1, 2, 4, 8 and 16 cores (Nth) with shared memory. We
have used matrices from the Matrix Market Collection [20]. The s-Minimal Error was executed over the matrix fidapm11,
non symmetric matrix of order 22294, and the s-BiCG over fidapm37, non symmetric matrix of order 9152. The termination
criterion used was ∥ri∥

∥r0∥
< ϵ, where ϵ = 5 · 10−3 for s-Minimal Error and ϵ = 5 · 10−4 for s-BiCG.

First we can see, in Tables 2 and 3, how the number of iterations decreases when the value of s increases. In the s-Minimal
Error s take values of 1, 2, 4, 6 and 8 and in the s-BiCG 1, 2, 4 and 6. Methods with s = 1 are equivalent to the originals. We
have found stability problems in s-BiCG with values of s greater than 6.

Execution times are shown in Tables 4 and 5.
We have measured a relative speedup with respect to the original method (s = 1) in sequential (Nth = 1). Figs. 1 and 3

show the speedup for both methods, and Figs. 2 and 4 show their relative speedup. It can be seen that the greater the value
of s is, the higher the relative speedup is. They corroborate a major efficiency of these methods in parallel programming.
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Fig. 2. Relative speedup for s-Minimal Error.

Fig. 3. Speedup for s-BiCG.

Fig. 4. Relative speedup for s-BiCG.

7. Conclusions and future work

In this work, an s-step variant of the General Orthogonalization Algorithm which generalizes Conjugate Gradient
methods has been presented. The s-step variants of known iterative methods are derived as particular cases (some of
which converging for every nonsingular matrix) and two are unpublished to our knowledge. It has been verified that the
convergence of these methods is supported in their s-step variants. This was done by proving some prerequisite lemmas
and convergence and error estimate theorems. An Orthomin variant together with a convergence theorem has also been
described.

Using s-step variants, the transformation of s vector operations in one matrix operation has been achieved. Therefore,
these methods make use of greater level BLAS operations and gain efficiency in parallel computers with optimized BLAS
kernels. This is because the ratio between the number of operations performed and computer memory accesses increases
and the number of communications between nodes is reduced in multiprocessors systems.

The authors prove that the number of iterations required for convergence in an s-step method is that of the original
method divided by s. Broadly speaking, this translates into corresponding time improvements, provided numerical
instability does not showup in the process.We have to bear inmind thatwith the advent ofmainstream64-bitworkstations,
instability will be less of an issue in solving large systems. Numerical examples of the s-step variant of the double orthogonal
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series algorithmwere dealt with in [15] and s-step variant of the GMRES in [14]. Also, we can see more numerical examples
of other s-steps variants in the cited references. Throughout these papers, the benefits of s-step variant of the methods
have been assessed as outweighing the costs, which justifies attempting to generalize them to a larger class. Finally, some
numerical results are presented for the two new proposed methods. These results show that the parallel implementation of
s-step methods have better performance than the original ones (s = 1).

An exhaustive numerical and stability analysis of those and other methods in Table 1 is at present under study by the
authors.
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